182
Views
0
CrossRef citations to date
0
Altmetric
Mathematical Modelling, Symmetry and Topology

Monte Carlo simulations of chiral and achiral nematic droplets: thermal quenches and role of the elastic constants

, , , , &
Pages 1392-1405 | Accepted 09 Jan 2023, Published online: 06 Feb 2023

References

  • Selinger JV. Director deformations, geometric frustration, and modulated phases in liquid crystals. Ann Rev Condens Matter Phys. 2022;13(1):49–71.
  • Darmon A, Benzaquen M, Čopar S, et al. Topological defects in cholesteric liquid crystal shells. Soft Matter. 2016;12(46):9280–9288.
  • Kurik MV, Lavrentovich OD. Topological defects of cholesteric liquid crystals for volumes with spherical shape. Mol Cryst Liq Cryst. 1982;72(7–8):239–246.
  • Posnjak G, Čopar S, Muševič I. Points, skyrmions and torons in chiral nematic droplets. Sci Rep. 2016;6:26361.
  • Posnjak G, Čopar S, Muševič I. Hidden topological constellations and poly- valent charges in chiral nematic droplets. Nat Commun. 2017;8:14594.
  • Xu F, Crooker PP. Chiral nematic droplets with parallel surface anchoring. Phys Rev E. 1997;56(6):6853.
  • Fan J, Li Y, Bisoyi HK, et al. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets. Angew Chem. 2015;54(7):2160–2164.
  • Geng Y, Noh J, Drevensek-Olenik I, et al. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci Rep. 2016;6:26840.
  • Humar M, Muševič I. 3D microlasers from self-assembled cholesteric liquid- crystal microdroplets. Opt Express. 2010;18(26):26995–27003.
  • Lee H-G, Munir S, Park S-Y. Cholesteric liquid crystal droplets for biosensors. ACS Appl Mater Interfaces. 2016;8(39):26407–26417.
  • Sivakumar S, Wark KL, Gupta JK, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19(14):2260–2265.
  • Lin I-H, Miller DS, Bertics PJ, et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science. 2011;332(6035):1297–1300.
  • Miller DS, Wang X, Abbott NL. Design of functional materials based on liquid crystalline droplets. Chem Mater. 2014;26(1):496–506.
  • Orlova T, Aßhoff SJ, Yamaguchi T, et al. Creation and manipulation of topological states in chiral nematic microspheres. Nat Commun. 2015;6:7603.
  • Wang L, Chen D, Gutierrez-Cuevas KG, et al. Optically reconfigurable chiral microspheres of self-organized helical superstructures with handedness inversion. Mater Horiz. 2017;4(6):1190–1195. DOI:10.1039/C7MH00644F
  • de Souza RF, Omori EK, Zola RS. Marlics: a finite difference liquid crystal simulation package. Comput Phys Commun. 2022;277:108379.
  • Seč D, Čopar S, Žumer S. Topological zoo of free-standing knots in confined chiral nematic fluids. Nat Commun. 2014;5:3057.
  • Seč D, Porenta T, Ravnik M, et al. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter. 2012;8(48):11982–11988.
  • Backer AS, Callan-Jones AC, et al. Nematic cells with defect-patterned alignment layers. Phys Rev E. 2008;77:021701.
  • Biagio RL, de Souza RT, Evangelista LR, et al. Spontaneous striped pattern formation in thin chiral nematic liquid crystal layers. J Mol Liq. 2018;269:703–711.
  • Chiccoli C, Lavrentovich OD, Pasini P, et al. Monte Carlo simulations of stable point defects in hybrid nematic films. Phys Rev Lett. 1997;79:4401–4404.
  • Omori EK, Zola RS, Teixeira de Souza R. Stable disclination lines in nematic liquid crystals confined in thin films with periodic-planar surfaces: a Monte Carlo study. J Mol Liq. 2021;342:117538.
  • Krakhalev MN, Gardymova AP, Prishchepa OO, et al. Bipolar configuration with twisted loop defect in chiral nematic droplets under homeotropic surface anchoring. Sci Rep. 2017;7(1):14582.
  • Rudyak VY, Emelyanenko AV, Loiko VA. Structure transitions in oblate nematic droplets. Phys Rev E. 2013;88:052501.
  • Shvetsov SA, Rudyak VY, Gruzdenko AA, et al. Axisymmetric skyrmion-like structures in spherical-cap droplets of chiral nematic liquid crystal. J Mol Liq. 2020;319:114149.
  • Lebwohl PA, Lasher G. Nematic liquid crystal order. A Monte Carlo calculation. Phys Rev A. 1972;6:426–429.
  • Gruhn T, Hess S. Monte Carlo simulation of the director field of a nematic liquid crystal with three elastic coefficients. Z Naturforsch A. 1996;51(1–2):1–9.
  • Luckhurst GR, Romano S. Computer simulation study of a nematogenic lattice model based on an elastic energy mapping of the pair potential. Liq Cryst. 1999;26(6):871–884.
  • Chiccoli C, Pasini P, Zannoni C. Can elastic constants and surface alignment be obtained from polarized microscopy images of nematic droplets? A Monte Carlo study. J Mol Liq. 2018;267:158–165. Special Issue Dedicated to the Memory of Professor Y. Reznikov. https://www.sciencedirect.com/science/article/pii/S0167732217353059
  • Luckhurst GR, Saielli G. A pairwise additive potential for the elastic interaction energy of a chiral nematic. Mol Cryst Liq Cryst. 2003;395(1):183–192. https://www.tandfonline.com/doi/abs/10.1080/15421406.2017.1403791
  • Biagio Renan L, Souza RT, Evangelista LR, et al. Frustrated structures and pattern formation after thermal quenches in cholesteric liquid crystal droplets. J Mater Chem C. 2021;9:8623–8639.
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21(6):1087–1092.
  • Memmer R, Janssen F. Computer simulation of chiral liquid crystal phases part 5 temperature dependence of the pitch of a cholesteric phase studied under self-determined boundary conditions. J Chem Soc Faraday Trans. 1998;94(2):267–276.
  • Saha J, Saha M. A lattice model Monte Carlo simulation of cholesteric liquid crystal with freely rotating molecules. Mol Simulat. 1997;19(4):227–235.
  • Fabbri U, Zannoni C. A Monte Carlo investigation of the lebwohl-lasher lattice model in the vicinity of its orientational phase-transition. Mol Phys. 1986;58:763–788.
  • Skačej G, Zannoni C. The nematic-isotropic transition of the lebwohl–lasher model revisited. Philos Trans Royal Soc A. 2021;379(2201):20200117.
  • Zhou Y, Bukusoglu E, Martínez-González JA, et al. Structural transitions in cholesteric liquid crystal droplets. ACS Nano. 2016;10(7):6484–6490.
  • Lopez-Leon T, Fernandez-Nieves A. Drops and shells of liquid crystal. Colloid Polym Sci. 2011;289(4):345–359.
  • Drzaic PS. A case of mistaken identity: spontaneous formation of twisted bipolar droplets from achiral nematic materials. Liq Cryst. 1999;26(5):623–627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.