547
Views
5
CrossRef citations to date
0
Altmetric
Invited Articles

Chiral nematic liquid crystal organization of natural polymer nanocrystals

, , , , &
Pages 121-129 | Received 15 Jun 2022, Published online: 24 Jan 2023

References

  • Zhang S, Geryak R, Geldmeier J, et al. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem Rev. 2017;117(20):12942.
  • Ma W, Xu L, De Moura AF, et al. Chiral inorganic nanostructures. Chem Rev. 2017;117(12):8041.
  • Wang B, Zhou J, Koschny T, et al. Chiral metamaterials: simulations and experiments. J Opt: Pure Appl Opt. 2009;11(11):114003.
  • Xiong R, Grant AM, Ma R, et al. Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng R. 2018;125:1.
  • Zheng H, Li W, Li W, et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv Mater. 2018;30(13):1705948.
  • Wu X, Hao C, Kumar J, et al. Environmentally responsive plasmonic nanoassemblies for biosensing. Chem Soc Rev. 2018;47(13):4677.
  • Gansel JK, Thiel M, Rill MS, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325(5947):1513.
  • Gansel JK, Latzel M, Frölich A, et al. Tapered gold-helix metamaterials as improved circular polarizers. Appl Phys Lett. 2012;100(10):101109.
  • Urban MJ, Shen C, Kong X-T, et al. Chiral plasmonic nanostructures enabled by bottom-up approaches. Ann Rev Phys Chem. 2019;70(1):275.
  • Kato T, Uchida J, Ichikawa T, et al. Functional liquid crystals towards the next generation of materials. Angew Chem Int Ed. 2018;57(16):4355.
  • Georgiev DD, Glazebrook JF. On the quantum dynamics of Davydov solitons in protein α -helices. Phys A. 2019;517:257–269.
  • Toniolo C, Crisma M, Formaggio F, et al. Intramolecular backbone···backbone hydrogen bonds in polypeptide conformations. the other way around: ɛ-turn. Biopolymers. 2017;108(1):e22911.
  • Adamcik J, Jung JM, Flakowski J, et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol. 2010;5(6):423–428.
  • Usov I, Nyström G, Adamcik J, et al. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun. 2015;6(1):7564.
  • Vignolini S, Rudall PJ, Rowland AV, et al. Pointillist structural color in pollia fruit. Proc Natl Acad Sci. 2012;109(39):15712–15715.
  • Sharma V, Crne M, Park JO, et al. Structural origin of circularly polarized iridescence in jeweled beetles. Science. 2009;325(5939):449–451.
  • Weaver JC, Milliron GW, Miserez A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science. 2012;336(6086):1275–1280.
  • Zhang L, Wang T, Shen Z, et al. Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv Mater. 2016;28(6):1044.
  • Yashima E, Maeda K, Iida H, et al. Helical polymers: synthesis, structures, and functions. Chem Rev. 2009;109(11):6102.
  • Lee CC, Grenier C, Meijer E, et al. Preparation and characterization of helical self-assembled nanofibers. Chem Soc Rev. 2009;38(3):671.
  • Dogic Z, Fraden S. Cholesteric phase in virus suspensions. Langmuir. 2000;16(20):7820.
  • Grelet E, Fraden S. What is the origin of chirality in the cholesteric phase of virus suspensions? Phys Rev Lett. 2003;90(19):198302.
  • Mu X, Gray DG. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir. 2014;30(31):9256.
  • Matsumura S, Kajiyama S, Nishimura T, et al. Formation of helically structured chitin/CaCO3 hybrids through an approach inspired by the biomineralization processes of crustacean cuticles. Small. 2015;11(38):5127.
  • Nyström G, Arcari M, Mezzenga R. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids. Nat Nanotechnol. 2018;13(4):330.
  • Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nat Rev Mater. 2018;3(4):18016.
  • Lagerwall JPF, Schütz C, Salajkova M, et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mat. 2014;6(1):80.
  • Ling S, Chen W, Fan Y, et al. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci. 2018;85:1.
  • Korolovych VF, Cherpak V, Nepal D, et al. Cellulose nanocrystals with different morphologies and chiral properties. Polymer. 2018;145:334–347.
  • Kang S, Biesold GM, Lee H, et al. Dynamic chiro-optics of bio-inorganic nanomaterials via seamless co-Assembly of semiconducting nanorods and polysaccharide nanocrystals. Adv Funct Mater. 2021;31(42):2104596.
  • George J, Sabapathi S. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. 2015;8:45.
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479.
  • Bukharina D, Kim M, Han MJ, et al. Cellulose nanocrystals’ assembly under ionic strength variation: from high orientation ordering to a random orientation. Langmuir. 2022;38(20):6363–6375.
  • Ikai T, Okamoto Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev. 2009;109(11):6077.
  • Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4(11):3274.
  • Paajanen A, Ceccherini S, Maloney T, et al. Chirality and bound water in the hierarchical cellulose structure. Cellulose. 2019;26(10):5877.
  • Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed. 2011;50(24):5438.
  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941.
  • Parker RM, Guidetti G, Williams CA, et al. The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv Mater. 2017;30(19):1704477.
  • Parker RM, Frka-Petesic B, Guidetti G, et al. Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano. 2016;10(9):8443.
  • Yao K, Meng Q, Bulone V, et al. Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv Mater. 2017;29(28):1701323.
  • Frka-Petesic B, Guidetti G, Kamita G, et al. Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv Mater. 2017;29(32):1701469.
  • Zhao TH, Parker RM, Williams CA, et al. Printing of responsive photonic cellulose nanocrystal microfilm arrays. Adv Funct Mater. 2019;29(21):1804531.
  • Natarajan B, Emiroglu C, Obrzut J, et al. Dielectric characterization of confined water in chiral cellulose nanocrystal films. ACS Appl Mater Interfaces. 2017;9(16):14222.
  • Liu D, Wang S, Ma Z, et al. Structure–color mechanism of iridescent cellulose nanocrystal films. RSC Adv. 2014;4(74):39322.
  • Bardet R, Belgacem N, Bras J. Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces. 2015;7(7):4010.
  • Gray D. Chiral nematic ordering of polysaccharides. Carbohydr Polym. 1994;25(4):277.
  • Ritcey AM, Holme KR, Gray DG. Cholesteric properties of cellulose acetate and triacetate in trifluoroacetic acid. Macromolecules. 1988;21(10):2914.
  • Kelly JA, Shukaliak AM, Cheung CCY, et al. Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed. 2013;125(34):9080.
  • Kose O, Tran A, Lewis L, et al. Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun. 2019;10(1):510.
  • Nyström G, Arcari M, Adamcik J, et al. Nanocellulose fragmentation mechanisms and inversion of chirality from the single particle to the cholesteric phase. ACS Nano. 2018;12(6):5141.
  • Li Y, Suen J-Y, Prince E, et al. Colloidal cholesteric liquid crystal in spherical confinement. Nat Commun. 2016;7(1):12520.
  • Kaushik M, Basu K, Benoit C, et al. Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3d characterization. J Am Chem Soc. 2015;137(19):6124.
  • Persson NE, McBride MA, Grover MA, et al. Automated analysis of orientational order in images of fibrillar materials. Chem Mater. 2017;29(1):3–14.
  • Cherpak V, Korolovych VF, Geryak R, et al. Robust Chiral Organization of Cellulose Nanocrystals in Capillary Confinement. Nano Lett. 2018;18(11):6770–6777.
  • Kim M, Pierce K, Krecker M, et al. Monolithic chiral nematic organization of cellulose nanocrystals under capillary confinement. ACS Nano. 2021;15(12):19418–19429.
  • Zhang X, Kang S, Adstedt K, et al. Magnetic nanoparticle-decorated bacterial nanocelluloses for uniaxial liquid crystal phases and fast actuating materials. Nat Commun. 2022;13(1):5804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.