143
Views
2
CrossRef citations to date
0
Altmetric
Invited Articles

Theory of elastic interaction between axially symmetric 3D skyrmions in confined chiral nematic liquid crystals and in skyrmion bags

&
Pages 9-20 | Received 06 Sep 2022, Accepted 14 Jan 2023, Published online: 07 Feb 2023

References

  • Skyrme THR. A nonlinear field theory. Proc R Soc. 1961;A260:127.
  • Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556.
  • Rho M, Zahed I, editors. The multifaceted skyrmion. 2nd ed. Singapore: World Scientific; 2017.
  • Battye RA, Manton NS, Sutcliffe PM. Skyrmions and nuclei. In: Rho M Zahed I, editors. The multifaceted skyrmion. 2nd ed. Singapore: World Scientific; 2017. p. 3–38.
  • Brey L, Fertig HA, Côté R, et al. Skyrme crystal in a two-dimensional electron gas. Phys Rev Lett. 1995;75:2562–2565.
  • Schmeller A, Eisenstein JP, Pfeiffer LN, et al. Evidence for skyrmions and single spin flips in the integer quantized hall effect. Phys Rev Lett. 1995;75:4290–4293.
  • Neubauer A, Pfleiderer C, Binz B, et al. Topological hall effect in the a phase of MnSi. Phys Rev Lett. 2009;102:186602.
  • Ho TL. Spinor bose condensates in optical traps. Phys Rev Lett. 1998;81:742–745.
  • Ohmi T, Machida K. Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J Phys Soc Jpn. 1998;67:1822–1825.
  • Al Khawaja U, Stoof H. Skyrmions in a ferromagnetic Bose-Einstein condensate. Nature. 2001;411:918–920.
  • Leslie LS, Hansen A, Wright KC, et al. Creation and detection of skyrmions in a Bose-Einstein condensate. Phys Rev Lett. 2009;103:250401.
  • Rößler UK, Bogdanov AN, Pfleiderer C. Spontaneous skyrmion ground states in magnetic metals. Nature. 2006;442:797–801.
  • Binz B, Vishwanath A, Aji V. Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. Phys Rev Lett. 2006;96:207202.
  • Mühlbauer S, Binz B, Jonietz F, et al. Skyrmion lattice in a chiral magnet. Science. 2009;323:915–919.
  • Münzer W, Neubauer A, Adams T, et al. Skyrmion lattice in the doped semiconductor Fe1-xCoxsi. Phys Rev B. 2010;81:041203(R).
  • Yu XZ, Onose Y, Kanazawa N, et al. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;3010(465):901–904.
  • Kiselev NS, Bogdanov AN, Schäfer R, et al. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J Phys D Appl Phys. 2011;44:392001.
  • Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat Nanotechnol. 2013;8:152.
  • Bogdanov AN, Yablonsky DA. Thermodynamically stable vortices in magnetically ordered crystals. Mixed state of magnetics. Zh Eksp Teor Fiz. 1989;95:178. (1989) [Sov Phys JETP. 1989;68:101.]
  • Bogdanov A, Hubert A. Thermodynamically stable magnetic vortex states in magnetic crystals. J Magn Magn Mater. 1994;138:255.
  • Bogdanov A, Hubert A. The stability of vortex-like structures in uniaxial ferromagnets. J Magn Magn Mater. 1999;195:182.
  • Butenko AB, Leonov AA, Rößler UK, et al. Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets. Phys Rev B. 2010;82:052403.
  • Leonov AO, Monchesky TL, Romming N, et al. The properties of isolated chiral skyrmions in thin magnetic films. New J Phys. 2016;18:065003.
  • Leonov AO, Bogdanov AN. Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets. New J Phys. 2018;20:043017.
  • Leonov AO, Monchesky TL, Loudon JC, et al. Three-dimensional chiral skyrmions with attractive interparticle interactions. J Phys Condens Matter. 2016;28:35LT01.
  • Loudon JC, Leonov AO, Bogdanov AN, et al. Direct observation of attractive skyrmions and skyrmion clusters in the cubic helimagnet Cu2OSeO3. Phys Rev B. 2018;97:134403.
  • Leonov AO, Togawa Y, Monchesky TL, et al. Chiral surface twists and skyrmion stability in nanolayers of cubic helimagnets. Phys Rev Lett. 2016;117:087202.
  • Leonov AO, Kezsmarki I. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy. Phys Rev B. 2017;96:014423.
  • Leonov AO, Inoue K. Homogeneous and heterogeneous nucleation of skyrmions in thin layers of cubic helimagnets. Phys Rev B. 2018;98:054404.
  • Leonov AO. Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets. Phys Rev E. 2021;104:044701.
  • Haas WEL, Adams JE. New optical storage mode in liquid crystals. Appl Phys Lett. 1974;25:535.
  • Fukuda JI, Žumer S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat Commun. 2011;2:246.
  • Leonov AO, Dragunov IE, Rößler UK, et al. Theory of skyrmion states in liquid crystals. Phys Rev E. 2014;90:042502.
  • Matteis GD, Delle Side D, Martina L, et al. Light scattering by cholesteric skyrmions. Phys Rev E. 2018;98:042702.
  • Bogdanov AN, Rößler UK, Shestakov AA. Skyrmions in nematic liquid crystals. Phys Rev E. 2003;67:016602.
  • Ackerman PJ, Trivedi RP, Senyuk B, et al. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys Rev E. 2014;90:012505.
  • Afghah S, Selinger JV. Theory of helicoids and skyrmions in confined cholesteric liquid crystals. Phys Rev E. 2017;96:012708.
  • Guo Y, Afghah S, Xiang J, et al. Cholesteric liquid crystals in rectangular microchannels: skyrmions and stripes. Soft Matter. 2016;12:6312.
  • Ackerman PJ, van de Lagemaat J, Smalyukh II. Selfassembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals. Nat Commun. 2015;6:6012.
  • Foster D, Kind C, Ackerman PJ, et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat Phys. 2019;15:655.
  • Hornreich RM, Shtrikman S. Field-induced hexagonal blue phases in positive and negative dielectric anisotropy systems: phase diagrams and topological properties. Phys Rev A. 1990;41:1978.
  • Nych A, Fukuda JI, Ognysta U, et al. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nat Phys. 2017;13:1215–1220.
  • Metselaar L, Doostmohammadi A, Yeomans JM. Topological states in chiral active matter: dynamic blue phases and active half-skyrmions. J Chem Phys. 2019;150:064909.
  • Duzgun A, Selinger JV, Saxena A. Comparing skyrmions and merons in chiral liquid crystals and magnets. Phys Rev E. 2018;97:062706.
  • Wang S, Ravnik M, Žumer S. Surface-patterning generated half-skyrmion lattices in cholesteric blue phase thin films. Liq Cryst. 2018;45(13–15):2329–2340.
  • Sohn HRO, Smalyukh II. Electrically powered motions of toron crystallites in chiral liquid crystals. Proc Natl Acad Sci, USA. 2020;117:6437.
  • Li BX, Borshch V, Xiao RL, et al. Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals. Nat Commun. 2018;9:2912.
  • Shen Y, Dierking I. Dynamics of electrically driven solitons in nematic and cholesteric liquid crystals. Commun Phys. 2020;3:14.
  • Sohn HRO, Liu CD, Wang Y, et al. Lightcontrolled skyrmions and torons as reconfigurable particles. Opt Express. 2019;27:29055.
  • Ackerman PJ, Boyle T, Smalyukh II. Squirming motion of baby skyrmions in nematic fluids. Nat Commun. 2017;8:673.
  • Smalyukh II, Senyuk BI, Palffy-Muhoray P, et al. Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys Rev E. 2005;72:061707.
  • Durey G, Sohn HRO, Ackerman PJ, et al. Topological solitons, cholesteric fingers and singular defect lines in janus liquid crystal shells. Soft Matter. 2020;16:2669.
  • Tai JSB, Smalyukh II. Surface anchoring as a control parameter for stabilizing torons, skyrmions, twisted walls, fingers, and their hybrids in chiral nematics. Phys Rev E. 2020;101:042702.
  • Sohn HRO, Ackerman PJ, Boyle TJ, et al. Dynamics of topological solitons, knotted streamlines, and transport of cargo in liquid crystals. Phys Rev E. 2018;97:052701.
  • Duzgun A, Nisoli C. Skyrmion spin ice in liquid crystals. Phys Rev Lett. 2021;126:047801.
  • Duzgun A, Nisoli C, Reichhardt CJO, et al. Commensurate states and pattern switching via liquid crystal skyrmions trapped in a square lattice. Soft Matter. 2020;16:3338.
  • Duzgun A, Saxena A, Selinger JV. Alignment-induced reconfigurable walls for patterning and assembly of liquid crystal skyrmions. Phys Rev Res. 2021;3:L012005.
  • Ackerman PJ, Smalyukh II. Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys Rev X. 2017;7:011006.
  • Poulin P, Stark H, Lubensky TC, et al. Novel colloidal interactions in anisotropic fluids. Science. 1997;275:1770–1773.
  • Poulin P, Cabuil V, Weitz DA. Direct measurement of colloidal forces in an anisotropic solvent. Phys Rev Lett. 1997;79:4862–4865.
  • Poulin P, Weitz DA. Inverted and multiple nematic emulsions. Phys Rev E. 1998;57:626–637.
  • Noël CM, Bossis G, Chaze AM, et al. Measurement of elastic forces between iron colloidal particles in a nematic liquid crystal. Phys Rev Lett. 2006;96:217801.
  • Kotar J, Vilfan M, Osterman N, et al. Interparticle potential and drag coefficient in nematic colloids. Phys Rev Lett. 2006;96:207801.
  • Vilfan M, Osterman N, Čopič M, et al. Confinement effect on interparticle potential in nematic colloids. Phys Rev Lett. 2008;101:237801.
  • Smalyukh II, Chernyshuk S, Lev BI, et al. Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. Phys Rev Lett. 2004;93:117801.
  • Nych AB, Ognysta UM, Pergamenshchik VM, et al. Coexistence of two colloidal crystals at the nematic-liquid-crystal-air interface. Phys Rev Lett. 2007;98:057801.
  • Yamamoto T, Yamamoto J, Lev BI, et al. Light-induced assembly of tailored droplet arrays in nematic emulsions. Appl Phys Lett. 2002;81:2187–2189.
  • Lev B, Chernyshuk SB, Yamamoto T, et al. Photochemical switching between colloidal photonic crystals at the nematic-air interface. Phys Rev E. 2008;78:020701(R).
  • Lev B, Nych A, Ognysta U, et al. Nematic emulsion in a magnetic field. JETP Lett. 2002;75:322–325.
  • Nazarenko VG, Nych AB, Lev BI. Crystal structure in nematic emulsion. Phys Rev Lett. 2001;87:075504.
  • Muševič I, Škarabot M, Tkalec U, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 2006;313:954–958.
  • Škarabot M, Ravnik M, Žumer S, et al. Two-dimensional dipolar nematic colloidal crystals. Phys Rev E. 2007;76:051406.
  • Ognysta U, Nych A, Nazarenko V, et al. 2D interactions and binary crystals of dipolar and quadrupolar nematic colloids. Phys Rev Lett. 2008;100:217803.
  • Škarabot M, Ravnik M, Žumer S, et al. Hierarchical self-assembly of nematic colloidal superstructures. Phys Rev E. 2008;77:061706.
  • Ravnik M, Škarabot M, Žumer S, et al. Entangled nematic colloidal dimers and wires. Phys Rev Lett. 2007;99:247801.
  • Tkalec U, Ravnik M, Žumer S, et al. Vortexlike topological defects in nematic colloids: chiral colloidal dimers and 2D crystals. Phys Rev Lett. 2009;103:127801.
  • Nych A, Ognysta U, Škarabot M, et al. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun. 2013;4:1489.
  • Lubensky TC, Pettey D, Currier N, et al. Topological defects and interactions in nematic emulsions. Phys Rev E. 1998;57:610–625.
  • Lev BI, Tomchuk PM. Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures. Phys Rev E. 1999;59:591–602.
  • Lev BI, Chernyshuk SB, Tomchuk PM, et al. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Phys Rev E. 2002;65:021709.
  • Pergamenshchik VM, Uzunova VO. Coulomb-like interaction in nematic emulsions induced by external torques exerted on the colloids. Phys Rev E. 2007;76:011707.
  • Pergamenshchik VM, Uzunova VA. Colloidal nematostatics. Condens Matter Phys. 2010;13:33602.
  • Pergamenshchik VM, Uzunova VA. Dipolar colloids in nematostatics: tensorial structure, symmetry, different types, and their interaction. Phys Rev E. 2011;83:021701.
  • Pergamenshchik VM, Uzunova VA. Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics. Phys Rev E. 2009;79:021704.
  • Chernyshuk SB, Lev BI. Elastic interaction between colloidal particles in confined nematic liquid crystals. Phys Rev E. 2010;81:041701.
  • Chernyshuk SB, Lev BI. Theory of elastic interaction of colloidal particles in nematic liquid crystals near one wall and in the nematic cell. Phys Rev E. 2011;84:011707.
  • Chernyshuk SB, Tovkach OM, Lev BI. Theory of elastic interaction between colloidal particles in a nematic cell in the presence of an external electric or magnetic field. Phys Rev E. 2012;85:011706.
  • Tovkach OM, Chernyshuk SB, Lev BI. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals. Phys Rev E. 2012;86:061703.
  • Tovkach OM, Chernyshuk SB, Lev BI. Colloidal interactions in a homeotropic nematic cell with different elastic constants. Phys Rev E. 2015;92:042505.
  • Chernyshuk S. High-order elastic terms, boojums and general paradigm of the elastic interaction between colloidal particles in the nematic liquid crystals. Eur Phys J E. 2014;37:6.
  • Senyuk B, Puls O, Tovkach OM, et al. Hexadecapolar colloids. Nat Commun. 2016;7:1–7.
  • Chernyshuk SB, Tovkach OM. Colloidal particles as elastic triads in nematic liquid crystals. Liq Cryst. 2016;43:2410–2421.
  • Chernyshuk SB, Tovkach OM, Lev BI. Elastic octopoles and colloidal structures in nematic liquid crystals. Phys Rev E. 2014;89:032505.
  • Tovkach OM, Chernyshuk SB, Lev BI. Colloidal particles in confined and deformed nematic liquid crystals: electrostatic analogy and its implications. In: Bulavin L Lebovka N, editors. Soft matter systems for biomedical applications. springer proceedings in physics. Vol. 266. Cham: Springer; 2022. p. 113–160.
  • Senyuk B, Mozaffari A, Crust K, et al. Transformation between elastic dipoles, quadrupoles, octupoles, and hexadecapoles driven by surfactant self-assembly in nematic emulsion. Sci adv. 2021;7(25):eabg0377.
  • Jackson JD. Classical electrodynamics. 3rd ed. New York: Wiley; 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.