218
Views
3
CrossRef citations to date
0
Altmetric
Invited Articles

Aided- and self-assembly of liquid crystalline nanoparticles in bulk and in solution: computer simulation studies

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 74-97 | Received 31 Oct 2022, Published online: 06 Feb 2023

References

  • Yokoyama M, Hosokawa K, Nogi M, editors. et al. Nanoparticle technology handbook. Amsterdam: Elsevier; 2008.
  • Hepel M, Zhong CJ, editors. Functional nanoparticles for bioanalysis, nanomedicine, and bioelectronic devices volume 1. Am Chem Soc. 2012. DOI:10.1021/bk-2012-1112
  • Kumar SK, Ganesan V, Riggleman RA. Perspective: outstanding theoretical questions in polymer-nanoparticle hybrids. J Chem Phys. 2017;147(2):020901. DOI:10.1063/1.4990501
  • Ariga K, Nishikawa M, Mori T, et al. Self-assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater. 2019;20(1):51–95. DOI:10.1080/14686996.2018.1553108
  • Kumar S. Nanoparticles in discotic liquid crystals. Series in Soft Condensed Matt World Scientific. 2016:461–496. DOI:10.1142/9789814619264_0013
  • Draper M, Saez IM, Cowling SJ, et al. Self-assembly and shape morphology of liquid crystalline gold metamaterials. Adv Funct Mater. 2011;21(7):1260–1278. DOI:10.1002/adfm.201001606
  • Heinz H, Pramanik C, Heinz O, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep. 2017;72(1):1–58. DOI:10.1016/j.surfrep.2017.02.001
  • Agrawal AK, Kumar K, Swarnakar NK, et al. “Liquid crystalline nanoparticles”: rationally designed vehicle to improve stability and therapeutic efficacy of insulin following oral administration. Mol Pharm. 2017;14(6):1874–1882. DOI:10.1021/acs.molpharmaceut.6b01099
  • Choudhary A, George T, Li G. Conjugation of nanomaterials and nematic liquid crystals for futuristic applications and biosensors. Biosensors (Basel). 2018;8(3):69. DOI:10.1390/bios8030069
  • Shen Y, Dierking I. Perspectives in liquid-crystal-aided nanotechnology and nanoscience. Appl Sci. 2019;9(12):2512. DOI:10.1390/app9122512
  • Voth G, editor. Coarse-graining of condensed phase and biomolecular systems. CRC Press; 2008.
  • Rühle V, Junghans C, Lukyanov A, et al. Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput. 2009;5(12):3211–3223. DOI:10.1021/ct900369w
  • Orlandi S, Zannoni C. Phase organization of mesogen-decorated spherical nanoparticles. Mol Cryst Liq Cryst. 2013;573(1):1–9. DOI:10.1080/15421406.2012.763213
  • Baran Ł, Sokołowski S. A comparison of molecular dynamics results for two models of nanoparticles with fixed and mobile ligands in two-dimensions. Appl Surf Sci. 2017;396:1343–1351. DOI:10.1016/j.apsusc.2016.11.159
  • Ponomarenko SA, Boiko NI, Shibaev VP, et al. Carbosilane liquid crystalline dendrimers: from molecular architecture to supramolecular nanostructures. Macromol. 2000;33(15):5549–5558 DOI:10.1021/ma0001032
  • Hughes ZE, Wilson MR, Stimson LM. Coarse-grained simulation studies of a liquid crystal dendrimer: towards computational predictions of nanoscale structure through microphase separation. Soft Matter. 2005;1(6):436 DOI:10.1039/B511082C
  • Ilnytskyi I, Lintuvuori L, Wilson W. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers. Condens Matter Phys. 2010;13(3):33001. DOI:10.5488/CMP.13.33001
  • Ponomarenko SA, Rebrov EA, Bobrovsky AY, et al. Liquid crystalline carbosilane dendrimers: first generation. Liq Cryst. 1996;21(1):1–12. DOI:10.1080/02678299608033789
  • Lorenz K, Hölter D, Stühn B, et al. A mesogen-functionized carbosilane dendrimer: a dendritic liquid crystalline polymer. Adv Mat. 1996;8(5):414–416. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.19960080509
  • Lang H, Luhmann B. Siloxane and carbosiloxane based dendrimers: synthesis, reaction chemistry, and potential applications. Adv Mat. 2001;13(20):1523–1540.
  • Yonetake K, Masuko T, Morishita T, et al. Poly (propyleneimine) dendrimers peripherally modified with mesogens. Macromol. 1999;32(20):6578–6586. DOI:10.1021/ma990107a
  • Barberá J, Marcos M, Serrano JL Dendromesogens: liquid crystal organizations versus starburst structures. Chem –Eur J. 1999;5(6):1834–1840.
  • Lintuvuori JS, Wilson MR. A new anisotropic soft-core model for the simulation of liquid crystal mesophases. J Chem Phys. 2008;128(4):044906. DOI:10.1063/1.2825292
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107(11):4423–4435. DOI:10.1063/1.474784
  • Wilson MR. Molecular dynamics simulations of flexible liquid crystal molecules using a gay-berne/lennard-jones model. J Chem Phys. 1997;107(20):8654–8663. DOI:10.1063/1.475017
  • Wilson MR, Ilnytskyi JM, Stimson LM. Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents. J Chem Phys. 2003;119(6):3509. DOI:10.1063/1.1588292
  • Ilnytskyi J, Wilson MR. A domain decomposition molecular dynamics program for the simulation of flexible molecules with an arbitrary topology of lennard–jones and/or gay–berne sites. Comput Phys Commun. 2001;134(1):23–32. DOI:10.1016/s0010-4655(00)00187-9
  • Ilnytskyi JM, Wilson MR. A domain decomposition molecular dynamics program for the simulation of flexible molecules of spherically-symmetrical and nonspherical sites. II. Extension to NVT and NPT ensembles. Comput Phys Commun. 2002;148(1):43–58. DOI:10.1016/s0010-4655(02)00467-8
  • Ilnytskyi JM, Neher D. Structure and internal dynamics of a side chain liquid crystalline polymer in various phases by molecular dynamics simulations: a step towards coarse graining. J Chem Phys. 2007;126(17):174905. DOI:10.1063/1.2712438
  • Ilnytskyi J. Relation between the grafting density of liquid crystal macromolecule and the symmetry of self-assembled bulk phase: coarse-grained molecular dynamics study. Condens Matter Phys. 2013;16(4):43004. DOI:10.5488/CMP.16.43004
  • Lewandowski W, Fruhnert M, Mieczkowski J, et al. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun. 2015;6(1):1–9.
  • Saez IM, Goodby JW. Supermolecular liquid crystals. J Mater Chem. 2005;15(1):26. DOI:10.1039/b413416h
  • Saez IM, Goodby JW. Supermolecular liquid crystals. In: Liquid crystalline functional assemblies and their supramolecular structures. Berlin Heidelberg: Springer; 2008. p. 1–62. DOI:10.1007/430_2007_077
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40(1):306–319. DOI:10.1039/b901793n
  • Agina EV, Boiko NI, Richardson RM, et al. Synthesis, structure, and phase behavior of carbosilane LC dendrimers with terminal butoxyphenylbenzoate mesogenic groups. Polym Sci Ser A+. 2007;49(4):412–424. DOI:10.1134/s0965545x07040086
  • Wójcik M, Lewandowski W, Matraszek J, et al. Liquid-crystalline phases made of gold nanoparticles. Angew Chem Int Ed. 2009;48(28):5167–5169. DOI:10.1002/anie.200901206
  • Wojcik M, Kolpaczynska M, Pociecha D, et al. Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Matter. 2010;6(21):5397. DOI:10.1039/c0sm00539h
  • Wojcik MM, Gora M, Mieczkowski J, et al. Temperature-controlled liquid crystalline polymorphism of gold nanoparticles. Soft Matter. 2011;7(22):10561. DOI:10.1039/c1sm06436c
  • Ilnytskyi JM, Saphiannikova M. Reorientation dynamics of chromophores in photosensitive polymers by means of coarse-grained modeling. Chemphyschem. 2015;16(15):3180–3189. DOI:10.1002/cphc.201500500
  • Slyusarchuk S, Ilnytskyi I. Novel morphologies for laterally decorated metaparticles: molecular dynamics simulation. Condens Matter Phys. 2014;17(4):44001. DOI:10.5488/CMP.17.44001
  • Ikeda T, Mamiya J, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed. 2007;46(4):506–528. DOI:10.1002/anie.200602372
  • Wilson MR, Stimson LM, Ilnytskyi JM. The influence of lateral and terminal substitution on the structure of a liquid crystal dendrimer in nematic solution: a computer simulation study. Liq Cryst. 2006;33(10):1167–1175. DOI:10.1080/02678290600973113
  • Ilnytskyi JM, Slyusarchuk A, Saphiannikova M. Photocontrollable self-assembly of azobenzene-decorated nanoparticles in bulk: computer simulation study. Macromol. 2016;49(23):9272–9282. DOI:10.1021/acs.macromol.6b01871
  • Klajn R, Stoddart JF, Grzybowski BA Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem Soc Rev. 2010;39(6):2203–2237.
  • Bisby RH, Mead C, Morgan CG. Active uptake of drugs into photosensitive liposomes and rapid release on uv photolysis. Photochem Photobiol. 2000;72(1):57–61.
  • Liu X, Jiang M Optical switching of self-assembly: micellization and micelle–hollow-sphere transition of hydrogen-bonded polymers. Angew Chem Int Ed. 2006;118(23):3930–3934.
  • Raimondo C, Crivillers N, Reinders F, et al. Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly (3-hexylthiophene). Proc Nat Acad Sci. 2012;109(31):12375–12380.
  • Gallani JL, Hilliou L, Martinoty P, et al. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys Rev Lett. 1994;72(13):2109–2112. DOI:10.1103/PhysRevLett.72.2109
  • Ilnytskyi JM, Neher D, Saphiannikova M. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: molecular dynamics study. J Chem Phys. 2011;135(4):044901. DOI:10.1063/1.3614499
  • Doi M, Edwards S. The theory of polymer dynamics. Oxford: Clarendon Press; 1994.
  • van der Spoel D, van Maaren PJ, Berendsen HJC. A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys. 1998;108(24):10220. DOI:10.1063/1.476482
  • Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13(9):2037. DOI:10.1039/b306216n
  • Ikeda T, Horiuchi S, Karanjit DB, et al. Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. photochemically induced isothermal phase transition behaviors. Macromol. 1990;23(1):42–48. DOI:10.1021/ma00203a009
  • Barrett CJ, Mamiya J, Yager KG, et al. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter. 2007;3(10):1249. DOI:10.1039/B705619B
  • Petrova T, Toshchevikov V, Saphiannikova M. Light-induced deformation of polymer networks containing azobenzene chromophores and liquid crystalline mesogens. Soft Matter. 2015;11(17):3412–3423. DOI:10.1039/C5SM00019J
  • Todorov T, Nikolova L, Tomova N. Polarization holography 1: a new high-efficiency organic material with reversible photoinduced birefringence. Appl Opt. 1984;23(23):4309. DOI:10.1364/AO.23.004309
  • Michl J, Thulstrup EW, editors. Spectroscopy with polarized light: solute alignment by photoselection, liquid crystal, polymers, and membranes corrected software edition. VCH Publishers; 1995. Available from: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471186244.html
  • Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir. 1999;15(11):3782–3789. DOI:10.1021/la981598f
  • Freund HJ, Libuda J, Bäumer M, et al. Cluster, facets, and edges: site-dependent selective chemistry on model catalysts. Chem Rec. 2003;3(3):181–201. DOI:10.1002/tcr.10060
  • Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans Royal Soc A. 2010;368(1915):1333–1383. DOI:10.1098/rsta.2009.0273
  • Pawar AB, Kretzschmar I. Fabrication, assembly, and application of patchy particles. Macromol Rapid Commun. 2010;31(2):150–168. DOI:10.1002/marc.200900614
  • Dias CS, Nuno AM, Telo da Gama MM. Non-equilibrium adsorption of 2anb patchy colloids on substrates. Soft Matter. 2013;9(23):5616. DOI:10.1039/c3sm50386k
  • Choueiri RM, Galati E, Thérien-Aubin H, et al. Surface patterning of nanoparticles with polymer patches. Nature. 2016;538(7623):79–83. DOI:10.1038/nature19089
  • Kumar S, Pal SK, Lakshminarayanan V. Discotic-decorated gold nanoparticles. Mol Cryst Liq Cryst. 2005;434(1):/[251/[579]–258/[586]. DOI:10.1080/15421400590956261
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36(12):1902. DOI:10.1039/b417320c
  • Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. Npg Asia Mater. 2014;6(1): e82–e82. DOI:10.1038/am.2013.75
  • Ilnytskyi JM, Slyusarchuk A, Sokołowski S. Gelation of patchy ligand shell nanoparticles decorated by liquid-crystalline ligands: computer simulation study. Soft Matter. 2018;14(19):3799–3810. DOI:10.1039/c8sm00356d
  • Baran Ł, Sokołowski S. Effective interactions between a pair of particles modified with tethered chains. J Chem Phys. 2017;147(4):044903. DOI:10.1063/1.4994919
  • Gröschel AH, Walther A, Löbling TI, et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature. 2013;503(7475):247–251. DOI:10.1038/nature12610
  • Fowler PW, Quinn CM, Redmond DB. Decorated fullerenes and model structures for water clusters. J Chem Phys. 1991;95(10):7678–7681. DOI:10.1063/1.461341
  • Vukićević R, Beuermann S. Fullerenes decorated with poly(vinylidene fluoride). Macromol. 2011;44(8):2597–2603. DOI:10.1021/ma102754c
  • Estrada E. Metric and topological structure of networks. In: The structure of complex networks. Oxford University Press; 2011. p. 47–71.
  • Fogelholm R. The conductivity of large percolation network samples. J Phys C Solid State Phys. 1980;13(23):L571–574. DOI:10.1088/0022-3719/13/23/001
  • Nandivada H, Ross AM, Lahann J. Stimuli-responsive monolayers for biotechnology. Prog Polym Sci. 2010;35(1–2):141–154. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079670009001075
  • Hou L, Wang L, Zhang N, et al. Polymer brushes on metal–organic frameworks by UV-induced photopolymerization. Polym Chem. 2016;7(37):5828–5834. Available from: http://xlink.rsc.org/?doi=C6PY01008C
  • Feng C, Huang X. Polymer brushes: efficient synthesis and applications. Acc Chem Res. 2018;51(9):2314–2323. Available from: https://pubs.acs.org/doi/10.1021/acs.accounts.8b00307
  • Cheng S, Stevens MJ, Grest GS. Ordering nanoparticles with polymer brushes. J Chem Phys. 2017;147(22):224901. DOI:10.1063/1.5006048
  • Santer S, Rühe J. Motion of nano-objects on polymer brushes. Polym. 2004;45(25):8279–8297. DOI:10.1016/j.polymer.2004.09.085
  • Loebner S, Jelken J, Yadavalli N, et al. Motion of adsorbed nano-particles on azobenzene containing polymer films. Mol. 2016;21(12):1663. DOI:10.3390/molecules21121663
  • Kumar S, Dory YL, Lepage M, et al. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and pH-sensitive release of dye molecules. Macromol. 2011;44(18):7385–7393. DOI:10.1021/ma2010102
  • Nie G, Li G, Wang L, et al. Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application. Polym Chem. 2016;7(4):753–769. DOI:10.1039/c5py01333j
  • Uekusa T, Nagano S, Seki T. Unique molecular orientation in a smectic liquid crystalline polymer film attained by surface-initiated graft polymerization. Langmuir. 2007;23(8):4642–4645. DOI:10.1021/la063467h
  • Lysyakova L, Lomadze N, Neher D, et al. Light-tunable plasmonic nanoarchitectures using gold nanoparticle–azobenzene-containing cationic surfactant complexes. J Phys Chem C. 2015;119(7):3762–3770. DOI:10.1021/jp511232g
  • Kopyshev A, Galvin CJ, Patil RR, et al. Light-induced reversible change of roughness and thickness of photosensitive polymer brushes. ACS Appl Mater Interfaces. 2016;8(29):19175–19184. DOI:10.1021/acsami.6b06881
  • Santer S. Remote control of soft nano-objects by light using azobenzene containing surfactants. J Phys D Appl Phys. 2017;51(1):013002. DOI:10.1088/1361-6463/aa95ca
  • Jelken J, Santer S. Light induced reversible structuring of photosensitive polymer films. RSC Adv. 2019;9(35):20295–20305. DOI:10.1039/c9ra02571e
  • Slyusarchuk AY, Yaremchuk DL, Ilnytskyi JM. Adsorption of decorated nanoparticles on a liquid crystalline polymer brush: molecular dynamics study. Math Model Comput. 2020;7(2):207–218. DOI:10.23939/mmc2020.02.207

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.