141
Views
2
CrossRef citations to date
0
Altmetric
Invited Articles

Optical Tamm states in a hybrid structure with a holographic polymer-liquid crystal grating

, , , &
Pages 45-53 | Received 20 Dec 2022, Published online: 28 Feb 2023

References

  • Gaspar-Armenta A, Villa F. Photonic surface-wave excitation: photonic crystal–metal interface. J Opt Soc Am B. 2003;20(11):2349–2354.
  • Kavokin AV, Shelykh IA, Malpuech G. Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B. 2005;72:233102.
  • Vinogradov AP, Dorofeenko AV, Erokhin SG, et al. Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys Rev B. 2006;74(4):045128. DOI:10.1103/PhysRevB.74.045128
  • Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B. 2007;76(16):165415. DOI:10.1103/PhysRevB.76.165415
  • Sasin ME, Seisyan RP, Kalitteevski MA, et al. Tamm plasmon polaritons: slow and spatially compact light. Appl Phys Lett. 2008;92(25):251112. DOI:10.1063/1.2952486
  • Sasin ME, Seisyan RP, Kalitteevski MA, et al. Tamm plasmon-polaritons: first experimental observation. Superlattices Microstruct. 2010;47(1):44–49. DOI:10.1016/j.spmi.2009.09.003
  • Goto T, Dorofeenko AV, Merzlikin AM, et al. Optical Tamm states in one-dimensional magnetophotonic structures. Phys Rev Lett. 2008;101(11):113902. DOI:10.1103/PhysRevLett.101.113902
  • Vyunishev AM, Bikbaev RG, Svyakhovskiy SE, et al. Broadband Tamm plasmon polariton. J Opt Soc Am B. 2019;36(8):2299. DOI:10.1364/JOSAB.36.002299
  • Reshetnyak VY, Pinkevych IP, Bunning TJ, et al. Influence of rugate filters on the spectral manifestation of Tamm plasmon-polaritons. Materials. 2021;14(5):1282. DOI:10.3390/ma14051282
  • Takayama O, Bogdanov AA, Lavrinenko AB. Photonic surface waves on metamaterial interfaces. J Phys Condens Mater. 2017;29(46):463001.
  • Zhang WL, Wang F, Rao YJ, et al. Novel sensing concept based on optical Tamm plasmon. Opt Exp. 2014;22(12):14524–14529. DOI:10.1364/OE.22.014524
  • Auguié B, Fuertes MC, Angelomé PC, et al. Tamm plasmon resonance in mesoporous multilayers: toward a sensing application. ACS Photonics. 2014;1(9):775–780. DOI:10.1021/ph5001549
  • Kumar S, Maji PS, Das R. Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector. Sens Actuators A. 2017;260:10–15.
  • Balevicius Z. Strong coupling between Tamm and surface plasmons for advanced optical bio-sensing. Coatings. 2020;10:1187–1197.
  • Buzavaite-Verteliene E, Plikusiene I, Tolenis T, et al. Hybrid Tamm-surface plasmon polariton mode for highly sensitive detection of protein interactions. Opt Express. 2020;28:29033–29043.
  • Zhang WL, Yu SF. Bistable switching using an optical Tamm cavity with a Kerr medium. Opt Commun. 2010;283:2622–2626.
  • Zhou H, Yang G, Wang K, et al. Multiple optical Tamm states at a metal−dielectric mirror interface. Opt Lett. 2010;35:4112–4114.
  • Gong Y, Liu X, Lu H, et al. Perfect absorber supported by optical Tamm states in plasmonic waveguide. Opt Exp. 2011;19:18393–18398.
  • Yang Z-Y, Ishii S, Yokoyama T, et al. Tamm plasmon selective thermal emitters. Opt Lett. 2016;41:4453–4456.
  • Yang Z-Y, Ishii S, Yokoyama T, et al. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons. ACS Photonics. 2017;4:2212–2219.
  • Lee BJ, Fu CJ, Zhang ZM. Coherent thermal emission from one-dimensional photonic crystals. Appl Phys Lett. 2005;87:071904.
  • Gazzano O, Vasconcellos SM, Gauthron K, et al. Single photon source using confined Tamm plasmon modes. Appl Phys Lett. 2012;100:232111.
  • Jiménez-Solano A, Galisteo-López JF, Míguez H. Flexible and adaptable light-emitting coatings for arbitrary metal surfaces based on optical Tamm mode coupling. Adv Opt Mater. 2018;6:1700560.
  • Reshetnyak VY, Zadorozhnii VI, Pinkevych IP, et al. Liquid crystal control of the plasmon resonances at terahertz frequencies in graphene microribbon gratings. Phys Rev E. 2017;96:022703.
  • Timofeev IV, Pankin PS, Vetrov SY, et al. Chiral optical Tamm states: temporal coupled-mode theory. Crystals. 2017;7:113.
  • Reshetnyak VY, Zadorozhnii VI, Pinkevych IP, et al. Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate. AIP Adv. 2018;8:045024.
  • Cheng H-C, Kuo C-Y, Hung Y-J, et al. Liquid-crystal active Tamm-plasmon devices. Phys Rev Appl. 2018;9:064034.
  • Reshetnyak VY, Bunning TJ, Evans DR. Using liquid crystals to control surface plasmons. Liq Cryst. 2018;45:13.
  • Adams M, Cemlyn B, Henning I, et al. Model for confined Tamm plasmon devices. J Opt Soc Am A. 2019;36:125.
  • Buchnev O, Belosludtsev A, Reshetnyak V, et al. Observing and controlling a Tamm plasmon at the interface with a metasurface. Nanophotonics. 2020;9:897–903.
  • Reshetnyak VY, Zadorozhnii VI, Pinkevych IP, et al. Modelling the surface plasmon spectra of an ITO nanoribbon grating adjacent to a liquid crystal layer. Materials. 2020;13:1523.
  • Vetrov SY, Pyatnov MV, Timofeev IV. Spectral and polarization properties of a ‘cholesteric liquid crystal-phase film-metal’ structure. J Opt. 2016;18:015103.
  • Pyatnov MV, Vetrov SY, Timofeev IV. Localized optical states in a defect-containing liquid-crystal structure adjacent to the metal. Liq Cryst. 2017;44:674–678.
  • De Sio L, Tabiryan N, Bunning TJ. POLICRYPS-based electrically switchable Bragg reflector. Opt Express. 2015;23:32696–32702.
  • De Sio L, Ferjani S, Strangi G, et al. Universal soft matter template for photonic applications. Soft Matter. 2011;7:3739.
  • Caputo R, De Sio L, Veltri A, et al. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Opt Lett. 2004;29:1261–1263.
  • Sutherland RL, Natarajan LV, Tondiglia VP, et al., editors. Handbook of advanced electronic and photonic materials and devices. Vol. 7. San Diego: Academic Press; 2000.
  • Holmstrom SA, Natarajan LV, Tondiglia VP, et al. Mechanical tuning of holographic polymer-dispersed liquid crystal reflection gratings. Appl Phys Lett. 2004;85:1949–1951.
  • Jazbinšek M, Drevensek-Olenik I, Zgonik M, et al. Characterization of holographic polymer dispersed liquid crystal transmission gratings. J Appl Phys. 2001;90:3831.
  • Lucchetta DE, Criante L, Simoni F. Optical characterization of polymer dispersed liquid crystals for holographic recording. J Appl Phys. 2003;93:9669–9674.
  • Liu K, Xu H, Hu H, et al. One-step fabrication of graded rainbow-colored holographic photopolymer reflection grating. Adv Mater. 2012;24:1604–1609.
  • De Sio L, Lloyd PF, Tabiryan NV, et al. Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films. ACS Appl Mater Interfaces. 2018;10:13107–13112.
  • Kato K, Hisaki T, Date M. Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices. Jpn J Appl Phys. 1999;38:805.
  • Urbas AM, Tondiglia VP, Natarajan LV, et al. Optically switchable liquid crystal photonic structures. J Am Chem Soc. 2004;126:13580–13581.
  • Lee KM, Tondiglia VP, Godman NP, et al. Reconfigurable reflective colors in holographically patterned liquid crystal gels. ACS Photonics. 2020;7:1978–1982.
  • Zel’dovich BY, Tabiryan NV, Chilingaryan YS. Fredericks transitions induced by light fields. Sov Phys JETP. 1981;54:32–37.
  • Yariv A, Yeh P. Optical waves in crystals. Propagation and control of laser radiation. New York (NY): Wiley; 1984.
  • Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J. 1969;48:2909–2947.
  • Karpov SY, Stolyarov SN. Propagation and transformation of electromagnetic waves in one-dimensional periodic structures. Phys Usp. 1993;36:1–22.
  • Rioux D, Vallières S, Besner S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys. Adv Opt Mater. 2014;2:176–182.
  • Tkachenko V, Abbate G, Marino A, et al. Nematic liquid crystal optical dispersion in the visible-near infrared range. Mol Cryst Liq Cryst. 2006;454:263–271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.