74
Views
1
CrossRef citations to date
0
Altmetric
Confined Liquid Crystals

Surface species of nematic mixture E7 in hard confinement: spectroscopic investigations cannot distinguish among the E7 components interacting with the support surface

, , , &
Pages 1169-1176 | Received 11 Aug 2022, Accepted 15 Feb 2023, Published online: 01 Mar 2023

References

  • Crawford GP, Stannarius R, Doane JW. Surface-induced orientational order in the isotropic phase of a liquid-crystal material. Phys Rev A. 1991;44(4):2558–2569.
  • Crawford GP, Zumer S, editors. Liquid crystals in complex geometries formed by polymer and porous networks. London: Taylor & Francis; 1996. pp. 1–606.
  • Frunza S, Frunza L, Ganea CP, et al. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: density of adsorbed surface species. Eur Phys J Plus. 2016;131(2):Art. no. 27.
  • Frunza S, Ganea CP, Zgura I, et al. Molecular dynamics in bulk and surface species of cyanophenyl alkyl benzoates with 2, 3 and 7 carbon atoms. Liq Cryst. 2020;47(6):908–917.
  • Mănăilă-Maximean D, Cîrcu V, Ganea P, et al. Polymer dispersed liquid crystals films doped with carbon nanotubes: preparation methods. Proc SPIE 10977 Adv Top Optoelectron Microelectron Nanotechnol IX. 2018; 10977: 1097702.
  • Rusen E, Diacon A, Mitran RA, et al. E7 nematic liquid crystal encapsulated in a polymeric photonic crystal. Eur Polymer J. 2022;175:111374.
  • Zhong Z, Schuele DE, Gordon W1, et al. Dielectric properties of a PMMA/E7 polymer-dispersed liquid crystal. J Polymer Sci Part B Polymer Phys. 1992;30:1443–1449.
  • Viciosa MT, Nunes AM, Fernandes A, et al. Dielectric studies of the nematic mixture E7 on a hydroxypro-pylcellulose substrate. Liq Cryst. 2002;29(3):429–441.
  • Schönhals A, Frunza S, Frunza L, et al. Vibrational and molecular dynamics of a nanoconfined liquid crystal. Eur Phys J Special Topics. 2010;189(1):251–255.
  • Brás AR, Frunza S, Guerreiro L, et al. Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree. J Chem Phys. 2010;132(22):224508.
  • Park H, Parrott EPJ, Fan F, et al. Evaluating liquid crystal properties for use in terahertz devices. Opt Express. 2012;20(11):11899–11905.
  • Garbovskiy Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express. 2021;2(1):012004.
  • Selevou A, Papamokos G, Yildirim T, et al. Eutectic liquid crystal mixture E7 in nanoporous alumina. Effects of confinement on the thermal and concentration fluctuations. RSC Adv. 2019;9(65):37846.
  • Basu R, Atwood LJ, Sterling GW. Dielectric and electro-optic effects in a nematic liquid crystal doped with h-BN flakes. Crystals. 2020;10(2):123–135.
  • Basu R, Atwood LJ. Reduced ionic effect and accelerated electro-optic response in a 2D hexagonal boron nitride planar-alignment agent based liquid crystal device. Optical Material Express. 2019;9(3):1441–1449.
  • Hsu C-J, Lin L-J, Huang M-K, et al. Electro-optical effect of gold nanoparticle dispersed in nematic liquid crystals. Crystals. 2017;7(10):287.
  • Liu X, Xia X, Yang L, et al. Physical properties of liquid crystals doped with CsPbBr3 quantum dots. Liq Cryst. 2021;48(10):1357–1364.
  • Manaila-Maximean D, Danila O, Almeida PL, et al. Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network. Beilstein J Nanotechnol. 2018;9:155–163.
  • Manaila-Maximean D, Danila O, Ganea CP, et al. Filling in the voids of electrospun hydroxypropyl cellulose network: dielectric investigations. Eur Phys J Plus. 2018;133(4):Art No 159.
  • Manaila-Maximean D, Rosu C. Influence of polarizing electric field on electrical and optical properties of PDLC films. Mol Cryst Liq Cryst. 2004;413(1):9–19.
  • Selvaraj P, Subramani K, Srinivasan B, et al. Electro-optical effects of organic N benzyl-2-methyl-4-nitroaniline dispersion in nematic liquid crystals. Sci Rep. 2020;10(1):14273.
  • Singh BP, Sikarwar S, Pandey KK, et al. Carbon nanotubes blended nematic liquid crystal for display and electro-optical applications. Electron Mater. 2021;2(4):466–481.
  • Basu R, Kinnamon D, Skaggs N, et al. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension. J Appl Phys. 2016;119(18):185107.
  • Ganea CP, Manaila-Maximean D, Cîrcu V. Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystals. Eur Phys J Plus. 2020;135(10):article id.797.
  • Marinov YG, Hadjichristov GB, Rafailov PM, et al. Optical, electro-optical, electrical and dielectric characterization of nematic liquid crystal (E7) layers doped with graphene nanoparticles for electro-optics. J Phys Conf Ser. 2019;1186:1186 012031.
  • Aya S, Araoka F. Kinetics of motile solitons in nematic liquid crystals. Nat Commun. 2020;11(1):3248.
  • Baibarac M, Zgura I, Ganea CP, et al. Surface species of nematic mixture E7 by contact with Li+ ions. Eur Phys J E. 2022. submitted.
  • Brouckaert N, Podoliak N, Orlova T, et al. Nanoparticle-induced property changes in nematic liquid crystals. Nanomaterials. 2022;12(3):341 11.
  • Frunza L, Kosslick H, Frunza S, et al. Molecular dynamics of 4-n-octyl-4′-cyanobiphenyl in partially filled nanoporous SBA-type molecular sieves. Micropor Mesopor Mater. 2006;90(1–3):259–270.
  • Frunza S, Frunza L, Schönhals A, et al. On the confinement of liquid crystals in molecular sieves: dielectric measurements. Chem Phys Lett. 1999;307(3–4):167–176.
  • Frunza L, Frunza S, Schönhals A. Dielectric measurements of liquid crystals confined to molecular sieves. J Phys France IV 2000;10(PR7):Pr7-115- 118. DOI:10.1051/jp4:2000723
  • Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—bet, BJH, and DFT. Canad J Chem Engn. 2019;97(11):2781–2791.
  • Fausto R, Duarte ML, Moita MFR, et al. On the phase transition crystal-to-mesophase in even chain length copper(ii) carboxylates. J Thermal Anal Calorim. 1998;53(1):133–139.
  • Frunza S, Kosslick H, Schönhals A, et al. Study of the surface layer of aerosil–8cb composites by TG/DTA/DSC measurements. J Non-Cryst Solids. 2003;325(1–3):103–112.
  • Frunza L, Frunza S, Poterasu M, et al. Composites containing confined n-octyl-cyanobiphenyl. Monomer and dimer species in the surface layer by in situ FTIR spectroscopy. Spectrochim Acta A. 2009;72(2):248–253.
  • Frunza L, Frunza S, Kosslick H, et al. Phase behavior and molecular mobility of n -octylcyanobiphenyl confined to molecular sieves: dependence on the pore size. Phys Rev E. 2008;78(5):051701.
  • Frunza L, Frunza S, Zgura I, et al. Involvement of cyan and ester groups in surface interactions of aerosil–cyanophenyl alkyl benzoate systems with high silica density: infrared investigations. Spectrochim Acta Part A. 2010;75(4):1228–1235.
  • Gnatyuk I, Puchkovskaya G, Yaroshchuk O, et al. Spectroscopic study of liquid crystals in confined volume. J Mol Struct. 1999;511-512:189–197.
  • Zubowa H-L, Kosslick H, Carius E, et al. The gallophosphate molecular sieve cloverite as a host for liquid crystals. Micropor Mesopor Mater. 1998;21(4–6):467–474.
  • Zecchina A, Guglielminotti E, Coluccia S, et al. Infrared spectra of nitriles of chromia–silica catalyst. J Chem Soc A. 1969;2169–2199.
  • Zhou YW, Jaroniec M, Gilpin RK. Infrared studies of the microdomains and mesomorphic properties of 4’-Cyano-4-biphenyl [4-(4-pentenyloxy)]benzoate coated on Silica. Anal Chem. 1994;66(22):4100–4104. (b) Zhou YW, Jaroniec M, Hann G.L, Gilpin RK. Gas Chromatographic and Infrared Studies of 4’-Cyano-4-biphenyl 4-(4-Pentenyloxy)benzoate Coated on Porous Silica. Anal Chem. 1994;66:1454-1458.
  • Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter. 2005;17(15):R461–534.
  • Frunza L, Frunza S, Enache I, et al. Confining effects in composites containing molecular sieves. Mol Cryst Liq Cryst. 2004;418(1):=[69=[797]–85=[813].
  • Ungureanu F, Manea AS, Frunza L, et al. Pentylcyanobiphenyl as test molecule for the acid sites of powdered titanium(IV) oxides: sensitivity of core levels to the local structure. Mol Cryst Liq Cryst. 2012;562(1):200–217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.