276
Views
0
CrossRef citations to date
0
Altmetric
Confined Liquid Crystals

Luminescent DNA-origami nano-rods dispersed in a lyotropic chromonic liquid crystal

, , , , , , , & show all
Pages 1243-1251 | Received 03 Feb 2023, Accepted 04 Mar 2023, Published online: 28 Mar 2023

References

  • Leforstier A, Livolant F. DNA liquid crystalline blue phases. Electron microscopy evidence and biological implications. Liq Cryst. 1994;17(5):651–658.
  • Nakata M, Zanchetta G, Chapman BD, et al. End-to-End stacking and liquidcrystal condensation of 6–to 20–base pair DNA duplexes. Science. 2007;318:1276–1279.
  • Liu K, Zheng L, Ma C, et al. DNA–surfactant complexes: self-assembly properties and applications. Chem Soc Rev. 2017;46(16):5147–5172.
  • Siavashpouri M, Wachauf C, Zakhary M, et al. Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nature Mater. 2017;16:849–856.
  • Fraccia TP, Zanchetta G, Rimoldi V, et al. Evidence of liquid crystal–assisted abiotic ligation of nucleic acids. Orig Life Evol Biosph. 2015;45:51–68.
  • Cha YJ, Gim MJ, Oh K, et al. In-plane switching mode for liquid crystal displays using a DNA alignment layer. Appl Mater Inter. 2015;7:13627–13632.
  • Zhang B, Schmidtke J, Kitzerow HS. Fabrication of lyotropic alignment layers for thermotropic liquid crystals facilitated by an anisotropic polymer template. Adv Opt Mater. 2019;1801766:1–7.
  • Martens K, Funck T, Kempter S, et al. Alignment and graphene-assisted decoration of lyotropic chromonic liquid crystals containing DNA origami nanostructures. Small. 2016;112(12):1658–1666.
  • Atorf B, Funck T, Hegmann T, et al. Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures. Liq Cryst. 2017;44(12–13):1929–1947.
  • Zhang B, Martens K, Kneer L, et al. DNA origami nano-sheets and nano-rods alter the orientational order in a lyotropic chromonic liquid crystal. Nanomaterials. 2020;10(9):1695.
  • Liu Q, Kuzyk A, Endo M, et al. Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals. Optics Lett. 2019;44(11):2831–2834.
  • Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297.
  • Douglas SM, Dietz H, Liedl T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459:414–418.
  • Liu W, Zhong H, Wang R, et al. Crystalline two-dimensional DNA-Origami arrays. Angew Chem Int Ed. 2011;50:264–267.
  • Douglas SM, Marblestone AH, Teerapittayanon S, et al. Rapid prototyping of 3D DNA-origami shapes with caDnano. Nucleic Acids Res. 2009;37(15):5001–5006.
  • caDNAno is a free software available at the following URL: https://cadnano.org, provided under The MIT License http://www.opensource.org/licenses/mit-license.php by Nick Conway (Wyss Institute) and Shawn Douglas (UCSF); copyright © 2009–2012 Shawn M. Douglas.
  • Castro CE, Kilchherr F, Kim DN, et al. A primer to scaffolded DNA origami. Nat Meth. 2011;8:221–229.
  • Kim DN, Kilchherr F, Dietz H, et al. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 2012;40(7):2862–2868.
  • CanDo is a free software based on finite element modelling, available at the URL https://cando-dna-origami.org.
  • Wang P, Meyer TA, Pan V, et al. The beauty and utility of DNA origami. Chem. 2017;2:359–382.
  • Kuzyk A, Jungmann R, Acuna GP, et al. DNA origami route for nanophotonics. ACS Photonics. 2018;5:1151–1163.
  • Fan S, Wang D, Kenaan A, et al. Create nanoscale patterns with DNA origami. Small. 2019;15:1805554.
  • Heuer-Jungemann A, Liedl T. From DNA tiles to functional DNA materials. Trend Chem. 2019;1(9):799–814.
  • Dong J, Zhou C, Wang Q. Towards active self‑assembly through DNA nanotechnology. Top Curr Chem. 2020;378:33.
  • Tapio K, Bald I. The potential of DNA origami to build multifunctional materials. Multifunct Mater. 2020;3(3):032001.
  • Nguyen L, Döblinger M, Liedl T, et al. DNA-Origami-templated silica growth by sol–gel chemistry. Angew Chem Int Ed. 2019;58:912.
  • Lydon L. Chromonic review. J Mater Chem. 2010;20:10071–10099.
  • Agra-Kooijman DM, Singh G, Lorenz A, et al. Columnar molecular aggregation in the aqueous solutions of disodium cromoglycate. Phys Rev E. 2014;89:062504.
  • Gao M, Kim YK, Zhang C, et al. Direct observation of liquid crystals using cryo-TEM: specimen preparation and low-dose imaging. Microsc Res Tech. 2014;77(10):754–772.
  • Zhou S, Neupane K, Nastishin YA, et al. Elasticity, viscosity, and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate. Soft Matter. 2014;10:6571–6581.
  • Larsson A, Carlsson C, Jonsson M, et al. Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. J Am Chem Soc. 1994;116:8459–8465.
  • McGinn CK, Laderman LI, Zimmermann N, et al. Planar anchoring strength and pitch measurements in achiral and chiral chromonic liquid crystals using 90-degree twist cells. Phys Rev E. 2013;88:062513.
  • Kim YK, Shiyanovskii SV, Lavrentovich OD. Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J Phys Condens Matter. 2013;25:404202.
  • Rahimi M, Roberts TF, Armas-Pérez JC, et al. Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc Nat Acad Sci. 2015;112(17):5297–5302.
  • Ruhwandl RW, Terentjev EM. Monte carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle. Phys Rev E. 1997;56(5):5561–5565.
  • Tortora L, Lavrentovich OD. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc Nat Acad Sci. 2011;108(13):5163–5168.
  • Nguyen MK, Nguyen VH, Karthick Natarajan A, et al. Ultrathin silica coating of DNA origami nanostructures. Chem Mater. 2020;32(15):6657–6665.
  • Ober MF, Baptist A, Wassermann L, et al. In situ small angle x-ray scattering reveals strong condensation of DNA origami during silicification. Nature Commun. 2022;13:5668.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.