879
Views
3
CrossRef citations to date
0
Altmetric
Macromolecular Liquid Crystals

Ionic liquid crystal elastomers for actuators, sensors, and organic transistors

, , , , , , , & show all
Pages 1151-1161 | Received 30 Jan 2023, Published online: 20 Mar 2023

References

  • Laschi C, Cianchetti M. Soft robotics: new perspectives for robot bodyware and control. Front Bioeng Biotechnol. 2014;2.
  • Trivedi D, Rahn CD, Kier WM, et al. Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech. 2008;5(3):99–117.
  • Whitesides GM. Soft robotics. Angew Chem Int Ed. 2018;57(16):4258–4273.
  • Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521(7553):467–475.
  • Kim MS, Chu WS, Lee JH, et al. Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure. Int J Precis Eng Manuf. 2011;12(3):565–568.
  • Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: iI. from artificial requirements to innovative technological solutions. Bioinspir Biomim. 2012;7(2):025005.
  • Majidi C. Soft robotics: a perspective - current trends and prospects for the future. Soft Robot. 2014;1(1):5–11.
  • Giordano G, Carlotti M, Mazzolai B. A perspective on cephalopods mimicry and bioinspired technologies toward proprioceptive autonomous soft robots. Adv Mater Technol. 2021;6(12):2100437.
  • Bauer S, Bauer-Gogonea S, Graz I, et al. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater. 2014;26(1):149–162.
  • Polygerinos P, Wang Z, Galloway KC, et al. Soft robotic glove for combined assistance and at-home rehabilitation [Internet]. 2014. http://www.elsevier.com/open-access/userlicense/1.0/.
  • Davidson ZS, Shahsavan H, Aghakhani A, et al. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Sci Adv. 2019;5(11):eaay0855.
  • Majidi C. Soft robot: a perspective—current trends and prospects for the future. Soft Robot. 2013;1(1):5–11.
  • Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun. 2010;31(1):10–36.
  • Duduta M, Wood RJ, Clarke DR. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Adv Mater. 2016;28(36):8058–8063.
  • Duduta M, Hajiesmaili E, Zhao H, et al. Realizing the potential of dielectric elastomer artificial muscles. Proc Natl Acad Sci USA. 2019;116(7):116.
  • Acome E, Mitchell SK, Morrissey TG, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science. 2018;359(6371):359.
  • Pelrine R. High-speed electrically actuated elastomers with strain greater than 100%. Science. 2000;287(5454):836–839.
  • Pelrine R, Kornbluh R, Kofod G. High-strain actuator materials based on dielectric elastomers. Adv Mater. 2000;12(16):1223–1225.
  • Biggs J, Danielmeier K, Hitzbleck J, et al. Electroactive polymers: developments of and perspectives for dielectric elastomers. Ang Chem Int Ed. 2013;52(36):9409–9421.
  • Courty S, Mine J, Tajbakhsh AR, et al. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys Lett (EPL). 2003;64(5):654–660.
  • Ohm C, Brehmer M, Zentel R. Application of liquid crystalline elastomers. Adv Polym Sci. 2012;250:49–94.
  • Lagerwall ST, Dahl I, Dahl STL, et al. Ferroelectric liquid crystals. Mol Cryst Liq Cryst. 1984;114(1–3):151–187.
  • Sebastián N, Čopič M, Mertelj A, et al. Ferroelectric nematic liquid crystalline phases. Phys Rev E. 2022;106(2):021001.
  • Saha R, Nepal P, Feng C, et al. Multiple ferroelectric nematic phases of a highly polar liquid crystal compound. Liq Cryst. 2022;49(13):1784–1796.
  • Lehmann W, Skupin H, Tolksdorf C, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature. 2001;410(6827):447–450.
  • Shian S, Bertoldi K, Clarke DR. Dielectric elastomer based “Grippers” for soft robotics. Adv Mater [Internet]. 2015;27(43):6814–6819.
  • Baughman RH. Conducting polymer artificial muscles. Synth Met. 1996;78(3):339–353.
  • Smela E, Smela E. Conjugated polymer actuators for biomedical applications. Adv Mater. 2003;15(6):481–494.
  • Kaneto K, Kaneko M, Min Y, et al. “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met. 1995;71(1–3):2211–2212.
  • Plesse C, Vidal F, Teyssié D, et al. Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Comm. 2010;46(17):2910–2912.
  • Asaka K, Oguro K, Nishimura Y, et al. Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J. 1995;27(4):436–440.
  • Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys. 2002;92(5):2899–2915.
  • Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct. 2011;20(8):083001.
  • Manandhar P, Calvert PD, Buck JR. Elastomeric ionic hydrogel sensor for large strains. IEEE Sens J. 2012;12(6):2052–2061.
  • Imaizumi S, Kato Y, Kokubo H, et al. Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B. 2012;116(16):5080–5089.
  • Mukai K, Asaka K, Sugino T, et al. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in airs. Adv Mater. 2009;21(16):1582–1585.
  • Khaldi A, Plesse C, Vidal F, et al. Smarter actuator design with complementary and synergetic functions. Adv Mater. 2015;27(30):4418–4422.
  • Maziz A, Plesse C, Soyer C, et al. Top-down approach for the direct synthesis, patterning, and operation of artificial micromuscles on flexible substrates. ACS Appl Mater Interfaces. 2016;8(3):1559–1564.
  • Khaldi A, Plesse C, Soyer C, et al. Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett. 2011;98(16):164101.
  • Bar-Cohen Y, Zhang Q. Electroactive polymer actuators and sensors. MRS Bull. 2008;33(3):173–181.
  • Warner M, Terentjev EM. Liquid crystal elastomers [Internet]. 1st ed. Oxford: Clarendon Press; 2006. http://books.google.com/books?isbn=0198527675.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14(11):1087–1098.
  • Shahsavan H, Salili SM, Jákli A, et al. Thermally active liquid crystal network gripper mimicking the self-peeling of Gecko Toe Pads. Adv Mater [Internet]. 2017;29(3):1604021-(1–7).
  • Shahsavan H, Salili SM, Jákli A, et al. Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers. Adv Mater. Internet. 2015;27(43):6828–6833.
  • Zhang M, Shahsavan H, Guo Y, et al. Liquid-crystal-elastomer-actuated reconfigurable microscale kirigami metastructures. Adv Mater. 2021;33(25):2008605.
  • Guo Y, Shahsavan H, Sitti M. 3D microstructures of liquid crystal networks with programmed voxelated director fields. Adv Mater. 2020;32(38):2002753.
  • Shahsavan H, Zhao B. Biologically inspired enhancement of pressure-sensitive adhesives using a thin film-terminated fibrillar interface. Soft Matter. 2012;8(32):8281.
  • Mirfakhrai T, Madden JDW, Baughman RH. Polymer artificial muscles. Materials Today. 2007;10(4):30–38.
  • Hines L, Petersen K, Lum GZ, et al. Soft actuators for small-scale robotics. Adv Mater. 2017;29(13):1603483.
  • Uchida J, Soberats B, Gupta M, et al. Advanced functional liquid crystals. Adv Mater. 2022;34(23):2109063.
  • Ikeda T, Mamiya JI, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed. 2007;46(4):506–528.
  • Hussain M, Jull EIL, Mandle RJ, et al. Liquid crystal elastomers for biological applications. Nanomaterials. 2021;11(3):1–19.
  • Jákli A. Electro-mechanical effects in liquid crystals. Liq Cryst. 2010;37(6–7):825–837.
  • Feng C, Hemantha Rajapaksha CP, Jákli A. Ionic Elastomers for electric actuators and sensors. Eng. 2021;7(5):581–602.
  • Feng C, Rajapaksha CPH, Cedillo JM, et al. Electro-responsive ionic liquid crystal elastomers. Macromol Rapid Commun. 2019;40(19):1900299.
  • Rajapaksha CPH, Gunathilaka MDT, Narute S, et al. Flexo-Ionic effect of ionic liquid crystal elastomers. Molecules. 2021;26(14):4234.
  • Mayer RM. Piezoelectric effects in liquid crystals. Phys Rev Lett. 1969;22(18):25–29.
  • Ma W, Cross LE. Flexoelectric effect in ceramic lead zirconate titanate. Appl Phys Lett. 2005;86(7):1–3.
  • Ma W. Flexoelectricity: strain gradient effects in ferroelectrics. Phys Scr. 2007;T129:180–185.
  • Chu B, Salem DR. Flexoelectricity in several thermoplastic and thermosetting polymers. Appl Phys Lett. 2012;101(10):103905.
  • Marvan M, Havránek A. Flexoelectric effect in elastomers. Relationships of polymeric structure and properties. Darmstadt: Steinkopff; 2007. pp. 33–36.
  • Ma W. Flexoelectricity: strain gradient effects in ferroelectrics. Phys Scr T. 2007;T129:180–183.
  • Schmidt D, Schadt M, Helfrich W. Liquid-crystalline curvature electricity: the bending mode of MBBA. Z Naturforschung A. 1972;26A(2):277–280.
  • Meyer RB. Piezoelectric effects in liquid crystals. Phys Rev Lett. 1969;22(18):918–921.
  • Buka Á, Éber N, editors. Flexoelectricity in liquid crystals. 1st ed. London: Imperial College Press; 2013.
  • Harden J, Mbanga B, Éber N, et al. Giant flexoelectricity of bent-core nematic liquid crystals. Phys Rev Lett. 2006;97(15):157802–157804.
  • Harden J, Chambers M, Verduzco R, et al. Giant flexoelectricity in bent-core nematic liquid crystal elastomers. Appl Phys Lett [Internet]. 2010;96(10): 102907–3.
  • Hemantha Rajapaksha CP, Paudel PR, Kodikara PMSG, et al. Ionic liquid crystal elastomers-based flexible organic electrochemical transistors: effect of director alignment of the solid electrolyte. Appl Phys Rev. 2022;9(1):011415.
  • Kaphle V, Liu S, Al-Shadeedi A, et al. Contact resistance effects in highly doped organic electrochemical transistors. Adv Mater. 2016;28(39):8766–8770.
  • Kaphle V, Liu S, Keum C-M, et al. Organic electrochemical transistors based on room temperature ionic liquids: performance and stability. Phys Status Solidi A. 2018;215(24):1800631.
  • Jo YJ, Kim H, Ok J, et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv Funct Mater. 2020;30(29):1–12.
  • Lin P, Yan F, Yu J, et al. The application of organic electrochemical transistors in cell-based biosensors. Adv Mater. 2010;22(33):3655–3660.
  • Rivnay J, Inal S, Salleo A, et al. Organic electrochemical transistors. Nat Rev Mater. 2018;3(2).
  • Paudel PR, Kaphle V, Dahal D, et al. Tuning the transconductance of organic electrochemical transistors. Adv Funct Mater. 2020;11(3):2004939.
  • Bernards DA, Malliaras GG. Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater. 2007;17(17):3538–3544.
  • Paudel PR, Tropp J, Kaphle V, et al. Organic electrochemical transistors – from device models to a targeted design of materials. J Mater Chem C Mater. 2021;9(31):9761–9790.
  • White HS, Kittlesen GP, Wrighton MS. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J Am Chem Soc. 1984;106(18):5375–5377.
  • Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors. Nat Commun. 2013;4(1).
  • Campana A, Cramer T, Simon DT, et al. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv Mater. 2014;26(23):3874–3878.
  • Williamson A, Ferro M, Leleux P, et al. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv Mater. 2015;27(30):4405–4410.
  • Lin P, Yan F, Chan HLW. Ion-sensitive properties of organic electrochemical transistors. ACS Appl Mater Interfaces. 2010;2(6):1637–1641.
  • Liao C, Mak C, Zhang M, et al. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv Mater. 2015;27(4):676–681.
  • Guo K, Wustoni S, Koklu A, et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat Biomed Eng. 2021;5(7):666–677.
  • Coppedè N, Tarabella G, Villani M, et al. Human stress monitoring through an organic cotton-fiber biosensor. J Mater Chem B. 2014;2(34):5620–5626.
  • Lin P, Luo X, Hsing IM, et al. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv Mater. 2011;23(35):4035–4040.
  • Liao C, Zhang M, Niu L, et al. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J Mater Chem B. 2014;2(2):191–200.
  • Khodagholy D, Rivnay J, Sessolo M, et al. High transconductance organic electrochemical transistors. Nat Commun. 2013;4(1):1–6.
  • Chen S, Surendran A, Wu X, et al. Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv Funct Mater. 2020;2006186(51):1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.