230
Views
2
CrossRef citations to date
0
Altmetric
Novel Applications

Signal amplification strategies for optical biodetection at the liquid crystal–solid interface

, ORCID Icon & ORCID Icon
Pages 1624-1634 | Received 03 Dec 2022, Published online: 22 Mar 2023

References

  • Gupta VK, Skaife JJ, Dubrovsky TB, et al. Optical amplification of ligand-receptor binding using liquid crystals. Science. 1998;279:2077–2080.
  • Brake JM, Abbott NL. An experimental system for imaging the reversible adsorption of amphiphiles at aqueous− liquid crystal interfaces. Langmuir. 2002;18:6101–6109.
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1:29–51.
  • Wang Z, Xu T, Noel A, et al. Applications of liquid crystals in biosensing. Soft Matter. 2021;17:4675–4702.
  • Wang H, Xu T, Fu Y, et al. Liquid crystal biosensors: principles, structure and applications. Biosens (Basel). 2022;12(8):639.
  • Lockwood NA, Gupta JK, Abbott NL. Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surf Sci Rep. 2008;63(6):255–293.
  • Xie R, Li N, Li Z, et al. Liquid crystal droplet-based biosensors: promising for point-of-care testing. Biosens (Basel). 2022;12(9):758.
  • Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nat Mater. 2007;6(12):929–938.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675.
  • Gallo-Oller G, Ordonez R, Dotor J. A new background subtraction method for western blot densitometry band quantification through image analysis software. J Immunol Methods. 2018;457:1–5.
  • Yang S, Wu C, Tan H, et al. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal Chem. 2013;85(1):14–18.
  • Deng S, Jiang Q, Zhang T, et al. Liquid crystal biosensor based on Cd 2+ inducing the bending of PS-oligo for the detection of cadmium. Health. 2015;7(08):986.
  • Kim H-R, Kim J-H, Kim T-S, et al. Optical detection of deoxyribonucleic acid hybridization using an anchoring transition of liquid crystal alignment. Appl Phys Lett. 2005;87(14):143901.
  • Lai SL, Tan WL, Yang K-L. Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals. ACS Appl Mater Interfaces. 2011;3(9):3389–3395.
  • Liu Y, Yang K-L. Applications of metal ions and liquid crystals for multiplex detection of DNA. J Colloid Interface Sci. 2015;439:149–153.
  • Shen J, He F, Chen L, et al. Liquid crystal-based detection of DNA hybridization using surface immobilized single-stranded DNA. Mikrochim Acta. 2017;184(9):3137–3144.
  • Lai SL, Huang S, Bi X, et al. Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals. Langmuir. 2009;25(1):311–316.
  • Chen C-H, Yang K-L. Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals. Langmuir. 2010;26(3):1427–1430.
  • Ren H, Jang C-H. A simple liquid crystal-based aptasensor using a hairpin-shaped aptamer for the bare-eye detection of carcinoembryonic antigen. BioChip J. 2019;13(4):352–361.
  • Kim HJ, Jang C-H. Liquid crystal-based aptasensor for the detection of interferon-γ and its application in the diagnosis of tuberculosis using human blood. Sens Actuators B Chem. 2019;282:574–579.
  • Yang X, Li H, Zhao X, et al. A novel, label-free liquid crystal biosensor for Parkinson’s disease related alpha-synuclein. Chem Comm. 2020;56(40):5441–5444.
  • Abbasi AD, Hussain Z, Liaqat U, et al. Liquid crystal based binding assay for detecting HIV-1 surface glycoprotein. Front Chem. 2021;9:257.
  • Zapp E, Silva PS, Westphal E, et al. Troponin T immunosensor based on liquid crystal and silsesquioxane-supported gold nanoparticles. Bioconjug Chem. 2014;25(9):1638–1643.
  • Zhang M, Jang C-H. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal Biochem. 2014;455:13–19.
  • Nguyen DK, Jang C-H. A label-free liquid crystal biosensor based on specific DNA aptamer probes for sensitive detection of amoxicillin antibiotic. Micromach. 2021;12(4):370.
  • Wang Y, Wang B, Xiong X, et al. A self-oriented beacon liquid crystal assay for kanamycin detection with AuNPs signal enhancement. Anal Methods. 2022;14(4):410–416. DOI:10.1039/D1AY01613J
  • Khoshbin Z, Abnous K, Taghdisi SM, et al. A novel liquid crystal-based aptasensor for ultra-low detection of ochratoxin a using a π-shaped DNA structure: promising for future on-site detection test strips. Biosens Bioelectron. 2021;191:113457.
  • Verdian A, Khoshbin Z, Chen C-H. Development of a novel liquid crystal apta-sensing platform using P-shape molecular switch. Biosens Bioelectron. 2022;199:113882.
  • Chang T-K, Tung P-C, Lee M-J, et al. A liquid-crystal aptasensing platform for label-free detection of a single circulating tumor cell. Biosens Bioelectron. 2022;216:114607.
  • Lee M-J, Lee W. Liquid crystal-based capacitive, electro-optical and dielectric biosensors for protein quantitation. Liq Cryst. 2020;47(8):1145–1153.
  • Wu P-C, Karn A, Lee M-J, et al. Dye-liquid-crystal-based biosensing for quantitative protein assay. Dyes Pigm. 2018;150:73–78.
  • Lin C-H, Lee M-J, Lee W. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals. Appl Phys Lett. 2016;109(9):093703.
  • Lee M-J, Lin C-H, Lee W. “Liquid-crystal-based biosensing beyond texture observation,” oral presentation, invited paper 9565-36. Proceedings of SPIE (Society of Photo-Optical Instrumentation Engineers), Liquid Crystals XIX (Conference 9565), SPIE Organic Photonics + Electronics Symposium, San Diego Convention Center; 2015 Aug 9–13; San Diego, CA, USA. p. 956510-1–7.
  • Lin C-M, P-C W, Lee M-J, et al. Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal. Sens Actuators B Chem. 2019;282:158–163.
  • Lee M, Lee W. Chapter 5: Liquid crystal-based biosensing: exploiting the electrical and optical properties of various liquid crystals in quantitative bioassays. In: Lee W, Kumar S, editors. Unconventional Liquid Crystals and Their Applications. Berlin: De Gruyter. July 19 2021. p. 239–264.
  • Luan C, Luan H, Luo D. Application and technique of liquid crystal-based biosensors. Micromach. 2020;11(2):176.
  • Popov P, Mann EK, Jákli A. Thermotropic liquid crystal films for biosensors and beyond. J Mater Chem B. 2017;5(26):5061–5078.
  • Oladepo SA. Development and application of liquid crystals as stimuli-responsive sensors. Molecules. 2022;27(4):1453.
  • Qu R, Li G. Design and applications of liquid crystal biophotonic sensors for ion detection. Adv Photonics Res. 2022;3:2200007.
  • Verma I, Devi M, Sharma D, et al. Liquid crystal based detection of Pb (II) ions using spinach RNA as recognition probe. Langmuir. 2019;35(24):7816–7823.
  • Chen C-H, Lin Y-C, Chang H-H, et al. Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions. Anal Chem. 2015;87(8):4546–4551.
  • Singh SK, Nandi R, Mishra K, et al. Liquid crystal based sensor system for the real time detection of mercuric ions in water using amphiphilic dithiocarbamate. Sens Actuators B Chem. 2016;226:381–387.
  • Niu X, Liu Y, Wang F, et al. Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme. Opt Express. 2019;27(21):30421–30428.
  • Nguyen DK, Jang C-H. A cationic surfactant-decorated liquid crystal-based aptasensor for label-free detection of malathion pesticides in environmental samples. Biosens (Basel). 2021;11(3):92.
  • Zhang R-H, Qiong-Zheng H, Qi K, et al. Research on competitive enzymatic hydrolysis-assisted liquid crystal-based acetylcholine sensor. Chinese J of Anal Chem. 2021;49(2):e21014–21019.
  • Sun H, Yin F, Liu X, et al. Development of a liquid crystal-based α-glucosidase assay to detect anti-diabetic drugs. Microchem J. 2021;167:106323.
  • Lu S, Guo Y, Qi L, et al. Highly sensitive and label-free detection of catalase by a H2O2-responsive liquid crystal sensing platform. Sens Actuators B Chem. 2021;344:130279.
  • Zhou L, Kang Q, Fang M, et al. Label-free, rapid, and sensitive detection of carboxylesterase using surfactant-doped liquid crystal sensor. J Mol Liq. 2019;296:111921.
  • Hussain Z, Zafiu C, Küpcü S, et al. Liquid crystal based sensors monitoring lipase activity: a new rapid and sensitive method for cytotoxicity assays. Biosens Bioelectron. 2014;56:210–216.
  • Khan M, Khan AR, Shin J-H, et al. A liquid-crystal-based DNA biosensor for pathogen detection. Sci Rep. 2016;6(1):1–12.
  • Qi L, Hu Q, Kang Q, et al. Detection of biomarkers in blood using liquid crystals assisted with aptamer-target recognition triggered in situ rolling circle amplification on magnetic beads. Anal Chem. 2019;91(18):11653–11660.
  • Qi L, Liu S, Jiang Y, et al. Simultaneous detection of multiple tumor markers in blood by functional liquid crystal sensors assisted with target-induced dissociation of aptamer. Anal Chem. 2020;92(5):3867–3873.
  • Price AD, Schwartz DK. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J Am Chem Soc. 2008;130(26):8188–8194.
  • McUmber AC, Noonan PS, Schwartz DK. Surfactant–DNA interactions at the liquid crystal–aqueous interface. Soft Matter. 2012;8(16):4335–4342.
  • Lai SL, Hartono D, Yang K-L. Self-assembly of cholesterol DNA at liquid crystal/aqueous interface and its application for DNA detection. Appl Phys Lett. 2009;95(15):153702.
  • Zhou J, Dong Y, Zhang Y, et al. The assembly of DNA amphiphiles at liquid crystal-aqueous interface. Nanomaterials. 2016;6(12):229.
  • Verma I, Sidiq S, Pal SK. Poly (l-lysine)-coated liquid crystal droplets for sensitive detection of DNA and their applications in controlled release of drug molecules. ACS Omega. 2017;2(11):7936–7945.
  • Qu R, George TF, Li G. Development in liquid crystal microcapsules: fabrication, optimization and application. J Mater Chem C. 2022;10:413–432.
  • Sofi JA, Dhara S. Stability of liquid crystal micro-droplets based optical microresonators. Liq Cryst. 2019;46(4):629–639.
  • Duan R, Li Y, Shi B, et al. Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Talanta. 2020;209:120513.
  • Wang Z, Liu Y, Gong C, et al. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay. PhotoniX. 2021;2(1):1–16.
  • Wang Z, Zhang Y, Gong X, et al. Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Adv. 2020;2(7):2713–2719.
  • Bera T, Fang J. Optical detection of lithocholic acid with liquid crystal emulsions. Langmuir. 2013;29(1):387–392.
  • Niu X, Luo D, Chen R, et al. Optical biosensor based on liquid crystal droplets for detection of cholic acid. Opt Commun. 2016;381:286–291.
  • Han X, Han D, Zeng J, et al. Fabrication and performance of monodisperse liquid crystal droplet-based microchips for the on-chip detection of bile acids. Microchem J. 2020;157:105057.
  • Ma Z, Xu M, Zhou S, et al. Ultra-low sample consumption consecutive-detection method for biochemical molecules based on a whispering gallery mode with a liquid crystal microdroplet. Opt Lett. 2022;47(2):381–384.
  • Bera T, Deng J, Fang J. Protein-induced configuration transitions of polyelectrolyte-modified liquid crystal droplets. J Phys Chem B. 2014;118(18):4970–4975.
  • Verma I, Pani I, Sharma D, et al. Label-free imaging of fibronectin adsorption at poly-(L-lysine)-decorated liquid crystal droplets. J Phys Chem C. 2019;123(22):13642–13650.
  • Verma I, Sidiq S, Pal SK. Protein triggered ordering transitions in poly (L-lysine)-coated liquid crystal emulsion droplets. Liq Cryst. 2019;46(9):1318–1326.
  • Yin F, Cheng S, Liu S, et al. A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets. J Hazard Mater. 2021;420:126601.
  • Yoon SH, Gupta KC, Borah JS, et al. Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells. Langmuir. 2014;30(35):10668–10677.
  • Zhou L, Hu Q, Kang Q, et al. Construction of liquid crystal droplet-based sensing platform for sensitive detection of organophosphate pesticide. Talanta. 2018;190:375–381.
  • An Z, Jang CH. Fabrication of liquid crystal droplet patterns for monitoring aldehyde vapors. ChemPluschem. 2019;84(10):1554–1559.
  • Liu J, Wang T, Xiao J, et al. Portable liquid crystal droplet array in the capillary for rapid and sensitive detection of organophosphate nerve agents. Microchem J. 2022;178:107334.
  • Cheng S, Khan M, Yin F, et al. Surface-anchored liquid crystal droplets for the semi-quantitative detection of aflatoxin B1 in food samples. Food Chem. 2022;390:133202.
  • H-W S, Lee Y-H, Lee M-J, et al. Label-free immunodetection of the cancer biomarker CA125 using high-δn liquid crystals. J Biomed Opt. 2014;19(7):077006.
  • Shaban H, Yen S-C, Lee M-J, et al. Signal amplification in an optical and dielectric biosensor employing liquid crystal-photopolymer composite as the sensing medium. Biosens (Basel). 2021;11(3):81.
  • Lee M-J, Duan F-F, P-C W, et al. Liquid crystal–photopolymer composite films for label-free single-substrate protein quantitation and immunoassay. Biomed Opt Express. 2020;11(9):4915–4927.
  • Hsu W-L, Lee M-J, Lee W. Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules. Biomed Opt Express. 2019;10(10):4987–4998.
  • H-W S, Lee M-J, Lee W. Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125. J Biomed Opt. 2015;20(5):057004.
  • Chang T-K, Lee M-J, Lee W. Quantitative biosensing based on a liquid crystal marginally aligned by the PVA/DMOAP composite for optical signal amplification. Biosens (Basel). 2022;12(4):218.
  • Andrienko D. Introduction to liquid crystals. IMPRS School Bad Marienberg. 2006;14:4.
  • Hsu C-J, Chen B-L, Huang C-Y. Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate. Opt Express. 2016;24(2):1463–1471.
  • Škarabot M, Osmanagič E, Muševič I. Surface anchoring of nematic liquid crystal 8OCB on a DMOAP-silanated glass surface. Liq Cryst. 2006;33(5):581–585.
  • Seo DS, Iimura Y, Kobayashi S. Temperature dependence of the polar anchoring strength of weakly rubbed polyimide films for the nematic liquid crystal (5CB). Appl Phys Lett. 1992;61(2):234–236.
  • Ong LH, Ding X, Yang K-L. Mechanistic study for immobilization of cysteine-labeled oligopeptides on UV-activated surfaces. Colloids Surf B. 2014;122:166–174.
  • Chen C-H, Yang K-L. Improving protein transfer efficiency and selectivity in affinity contact printing by using UV-modified surfaces. Langmuir. 2011;27(9):5427–5432.
  • Ye T, Wynn D, Dudek R, et al. Photoreactivity of alkylsiloxane self-assembled monolayers on silicon oxide surfaces. Langmuir. 2001;17(15):4497–4500.
  • Wei X, Hong S-C, Zhuang X, et al. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys Rev E. 2000;62(4):5160.
  • Lin H-C, Ke L-Y, Liang HC, et al. Tunable pretilt angle based on gelator-doped planar liquid crystal cells. Liq Cryst. 2021;48(10):1448–1456.
  • Takatoh K, Sakamoto M, Hasegawa R, et al. Alignment technology and applications of liquid crystal devices. Oxon: Taylor & Francis; 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.