308
Views
2
CrossRef citations to date
0
Altmetric
Macromolecular Liquid Crystals

A facile photoinitiated polymerisation route for the preparation of photonic elastomers with chiral nematic order

, , , &
Pages 1143-1150 | Received 19 Jan 2023, Published online: 20 Apr 2023

References

  • Lee GH, Choi TM, Kim B, et al. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano. 2017;11(11):11350–11357.
  • Howell IR, Li C, Colella NS, et al. Strain-tunable one dimensional photonic crystals based on zirconium dioxide/slide-ring elastomer nanocomposites for mechanochromic sensing. ACS Appl Mater Interfaces. 2015;7(6):3641–3646.
  • Hussain S, Park S-Y. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness. ACS Appl Mater Interfaces. 2021;13(49):59275–59287.
  • Ozin GA, Arsenault AC. P-Ink and Elast-Ink from lab to market. Mater Today. 2008;11(7–8):44–51.
  • Fudouzi H, Sawada T. Photonic rubber sheets with tunable color by elastic deformation. Langmuir. 2006;22(3):1365–1368.
  • Tan H, Lyu Q, Xie Z, et al. Metallosupramolecular photonic elastomers with self-healing capability and angle-independent color. Adv Mater. 2019;31(6):1805496.
  • Yin T, Wu T, Zhong D, et al. Soft display using photonic crystals on dielectric elastomers. ACS Appl Mater Interfaces. 2018;10(29):24758–24766.
  • Lin R, Qi Y, Kou D, et al. Bio-inspired wrinkled photonic elastomer with superior controllable and mechanically stable structure for multi-mode color display. Adv Funct Mater. 2022;32(45):2207691.
  • Noh K-G, Park S-Y. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv Funct Mater. 2018;28(22):1707562.
  • Xu J, Guo Z. Biomimetic photonic materials with tunable structural colors. J Colloid Interface Sci. 2013;406:1–17.
  • Yu K, Fan T, Lou S, et al. Biomimetic optical materials: integration of nature’s design for manipulation of light. Prog Mater Sci. 2013;58(6):825–873.
  • Meier W, Finkelmann H. Piezoelectricity of cholesteric elastomers. 1. Influence of the helicoidal pitch on the piezoelectric coefficient. Macromolecules. 1993;26(8):1811–1817.
  • Schmidtke J, Kniesel S, Finklemann H. Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules. 2005;38(4):1357–1363.
  • Schmidtke J, Stille W, Finkelmann H. Defect mode emission of a dye doped cholesteric polymer network. Phys Rev Lett. 2003;90(8):083902.
  • Schmidtke J, Stille W, Finklemann H, et al. Laser emission in a dye doped cholesteric polymer network. Adv Mater. 2002;14(10):746–749.
  • Finkelmann H, Kim ST, Muñoz A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13(14):1069–1072.
  • Maxein G, Keller H, Novak BM, et al. Opalescent cholesteric networks from chiral polyisocyanates in polystyrene. Adv Mater. 1998;10(4):341–345.
  • Aguirre CI, Reguera E, Stein A. Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater. 2010;20(16):2565–2578.
  • Sharma V, Crne M, Park JO, et al. Structural origin of circularly polarized iridescence in jeweled beetles. Science. 2009;325(5939):449–451.
  • Teyssier J, Saenko SV, van der Marel D, et al. Photonic crystals cause active colour change in chameleons. Nat Commun. 2015;6(1):6368.
  • Vignolini S, Rudall PJ, Rowland AV, et al. Pointillist structural color in Pollia fruit. Proc Natl Acad Sci USA. 2012;109(39):15712–15715.
  • Liang H-L, Bay MM, Vadrucci R, et al. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat Commun. 2018;9(1):4632.
  • Espinha A, Dore C, Matricardi C, et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat Photonics. 2018;12(6):343–348.
  • Marchessault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides. Nature. 1959;184:632–633.
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479–3500.
  • Müller M, Zentel R. Cholesteric phases and films from cellulose derivatives. Macro Chem Phys. 2000;201(15):2055–2063.
  • Wenzlik D, Zentel R. High optical quality films of liquid crystalline cellulose derivatives in acrylates. Macromol Chem Phys. 2013;214(21):2405–2414.
  • Wenzlik D, Varanytsia A, Munoz A, et al. Distributed feedback lasing in cellulose films. Opt Mater Express. 2014;4(1):162–171.
  • Kargarzadeh H, Ahmad I, Abdullah I, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellul. 2012;19:855–866.
  • Peng BL, Dhar N, Liu HL, et al. Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng. 2011;89(5):1191–1206.
  • Revol JF, Bradford H, Gaisson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14(3):170–172.
  • Revol JF, Godbout L, Gray DG. Solid films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci. 1998;24(5):146–149.
  • Tran A, Boott CE, MacLachlan MJ. Understanding the self-assembly of cellulose nanocrystals – toward chiral photonic materials. Adv Mater. 2020;32(41):1905876.
  • Zhang F, Ge W, Wang C, et al. Highly strong and solvent-resistant cellulose nanocrystal photonic films for optical coatings. ACS Appl Mater Interfaces. 2021;13(14):17118–17128.
  • Wang C, Tang C, Wang Y, et al. Chiral photonic materials self-assembled by cellulose nanocrystals. Curr Opin Solid State Mater Sci. 2022;26(5):101017.
  • Qu D, Rojas OJ, Wei B, et al. Responsive chiral photonic cellulose nanocrystal materials. Adv Opt Mater. 2022;10(22):2201201.
  • Lagerwall JPF, Schütz C, Salajkova M, et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014;6(1):e80.
  • Xu M, Ma C, Zhou J, et al. Assembling semiconductor quantum dots in hierarchical photonic cellulose nanocrystal films: circularly polarized luminescent nanomaterials as optical coding labels. J Mater Chem C. 2019;7(44):13794–13802.
  • Fernandes SN, Geng Y, Vignolini S, et al. Structural color and iridescence in transparent sheared cellulosic films. Macromol Chem Phys. 2013;214(1):25–32.
  • Edgar CD, Gray DG. Induced circular dichroism of chiral nematic cellulose films. Cellul. 2001;8:5–12.
  • Querejeta-Fernández A, Chauve G, Methot M, et al. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc. 2014;136(12):4788–4793.
  • Parker RM, Guidetti G, Williams CA, et al. The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv Mater. 2018;30(19):1704477.
  • Giese M, Blusch LK, Khan MK, et al. Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed. 2014;54(10):2888–2910.
  • Boott CE, Soto MA, Hamad WY, et al. Shape-memory photonic thermoplastics from cellulose nanocrystals. Adv Funct Mater. 2021;31(43):2103268.
  • Kose O, Tran A, Lewis L, et al. Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nature Commun. 2019;10(1):510.
  • Boott CE, Tran A, Hamad WY, et al. Cellulose nanocrystal elastomers with reversible visible color. Angew Chem Int Ed. 2019;59(1):226–231.
  • Crivello JV, Reichmanis E. Photopolymer materials and processes for advanced technologies. Chem Mater. 2014;26(1):533–548.
  • Javadi A, Mehr HS, Sobani M, et al. Cure-on-command technology: a review of the current state of the art. Prog Org Coat. 2016;100:2–31.
  • Rasaki SA, Xiong D, Xiong S, et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review. J Adv Ceram. 2021;10(3):442–471.
  • Heydarnezhad HR, Pourabbas B, Tayefi M. Conducting electroactive polymers via photopolymerization: a review on synthesis and applications. Polym-Plast Technol Eng. 2018;57(11):1093–1109.
  • Pratap B, Gupta RK, Bhardwaj B, et al. Resin based restorative dental materials: characteristics and future perspectives. Jpn Dent Sci Rev. 2019;55(1):126–138.
  • Felipe-Mendes C, Ruiz-Rubio L, Vilas-Vilela JL. Biomaterials obtained by photopolymerization: from UV to two photon. Emerg Mater. 2020;3(4):453–468.
  • Yagci Y, Jockusch S, Turro NJ. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules. 2010;43(15):6245–6260.
  • Scherzer T, Savchuk O, Naumov S, et al. Self-initiation of photopolymerization: reactions using halogenated (meth)acrylates. RadTech Report. 2012;4:18–26.
  • Khudyakov IV. Fast photopolymerization of acrylate coatings: achievements and problems. Prog Org Coat. 2018;121:151–159.
  • Pietrzak E, Wiecinska P, Szafran M. 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina. Ceram Int. 2016;42(12):13682–13688.
  • Anseth KS, Wang CM, Bowman CN. Reaction behaviour and kinetic constants for photopolymerizations of multi(meth)acrylate monomers. Polymer. 1994;35(15):3243–3250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.