413
Views
0
CrossRef citations to date
0
Altmetric
Confined Liquid Crystals

Orientational transition in nanobridges of nematic liquid crystals in slit pores

ORCID Icon
Pages 1215-1228 | Received 31 Jan 2023, Accepted 05 Apr 2023, Published online: 24 Apr 2023

References

  • Kléman M. Points, lines and walls in liquid crystals, magnetic systems, and various disordered media. New York (USA): Wiley; 1983.
  • Bernal JD, Fankuchen I. X-ray and crystallographic studies of plant virus preparations. J Gen Physiol. 1941;25:111–165.
  • Sonin AS. Inorganic lyotropic liquid crystals. Colloid J USSR. 1998;60:129–151.
  • Lev BI, Nazarenko VG, Nych AB, et al. Deformation of liquid crystal droplets under the action of an external ac electric field. Phys Rev E. 2001;64(2):021706.
  • Herring C. Some theorems on the free energies of crystal surfaces. Phys Rev. 1951;82(1):87–93.
  • Chandrasekhar S. Surface tension of liquid crystals. Mol Cryst. 1966;2(1–2):71–80.
  • Williams RD Nematic liquid crystal droplets. Didcot (UK); 1985. (Report no. ral-85-028).
  • Williams RD. Two transitions in tangentially anchored nematic droplets. J Phys A Math Gen. 1986;19:3211–3222.
  • Virga EG. Variational theories for liquid crystals. London (UK): Chapman and Hall; 1994.
  • Kaznacheev AV, Bogdanov MM, Taraskin SA. The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals. J Exp Theor Phys. 2002;95(1):57–63.
  • Kaznacheev AV, Bogdanov MM, Sonin AS. The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganic liquid crystals. J Exp Theor Phys. 2003;97(6):1159–1167.
  • Prinsen P, Van Der Schoot P. Shape and director-field transformation of tactoids. Phys Rev E. 2003;68(21):021701.
  • Prinsen P, Van Der Schoot P. Continuous director-field transformation of nematic tactoids. Eur Phys J E. 2004;13(1):35–41.
  • Drzaic PS. Liquid crystal dispersions. Singapore: World Scientific; 1995.
  • Sutherland RL, Tondiglia VP, Natarajan LV, et al. Electrically switchable volume gratings in polymer-dispersed liquid crystals. Appl Phys Lett. 1994;64(9):1074–1076.
  • Bunning TJ, Natarajan LV, Tondiglia VP, et al. Holographic polymer-dispersed liquid crystals (h-pdlcs). Annu Rev Mater Sci. 2000;30:83–115.
  • Bowley CC, Kossyrev PA, Crawford GP, et al. Variable-wavelength switchable bragg gratings formed in polymer-dispersed liquid crystals. Appl Phys Lett. 2001;79(1):9–11.
  • Jazbinšek M, Olenik ID, Zgonik M, et al. Characterization of holographic polymer dispersed liquid crystal transmission gratings. J Appl Phys. 2001;90(8):3831–3837.
  • Rudhardt D, Fernández-Nieves A, Link DR, et al. Phase switching of ordered arrays of liquid crystal emulsions. Appl Phys Lett. 2003;82(16):2610–2612.
  • Fernández-Nieves A, Link DR, Weitz DA. Polarization dependent bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. Appl Phys Lett. 2006;88(12):121911.
  • Ellis PW, Huang S, Klaneček S, et al. Defect transitions in nematic liquid-crystal capillary bridges. Phys Rev E. 2018;97(4):040701.
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site-site potential. J Chem Phys. 1981;74(6):3316–3319.
  • Luckhurst GR, Simmonds PSJ. Computer simulation studies of anisotropic systems xxi. Parametrization of the Gay-Berne potential for model mesogens. Mol Phys. 1993;80(2):233–252.
  • Bates MA, Luckhurst GR. Computer simulation studies of anisotropic systems. xxx. The phase behavior and structure of a Gay-Berne mesogen. J Chem Phys. 1999;110(14):7087–7108.
  • Emerson APJ, Luckhurst GR, Whatling SG. Computer simulation studies of anisotropic systems xxiii. The Gay-Berne discogen. Mol Phys. 1994;82(1):113–124.
  • Cienega-Cacerez O, Moreno-Razo JA, Daz-Herrera E, et al. Phase equilibria, fluid structure, and diffusivity of a discotic liquid crystal. Soft Matter. 2014;10(18):3171–3182.
  • de Miguel E, Rull LF, Chalam MK, et al. Liquid-vapour coexistence of the Gay-Berne fluid by gibbs-ensemble simulation. Mol Phys. 1990;71(6):1223–1231.
  • de Miguel E, Rull LF, Chalam MK, et al. Location of the isotropic-nematic transition in the Gay-Berne model. Mol Phys. 1991;72(3):593–605.
  • Chalam MK, Gubbins KE, de Miguel E, et al. A molecular simulation of a liquid-crystal model: bulk and confined fluid. Mol Simul. 1991;7(5–6):357–385.
  • de Miguel E, Rull LF, Gubbins KE. Effect of molecular elongation on liquid-vapour properties: computer simulation and virial approximation. Phys A. 1991;177(1–3):174–181.
  • de Miguel E, Rull LF, Chalam MK, et al. Liquid crystal phase diagram of the Gay-Berne fluid. Mol Phys. 1991;74(2):405–424.
  • de Miguel E, Rull LF, Gubbins KE. Dynamics of the Gay-Berne fluid. Phys Rev A. 1992;45(6):3813–3822.
  • Rull LF. Phase diagram of a liquid crystal model: a computer simulation study. Phys A. 1995;220(1–2):113–138.
  • de Miguel E, del Rio EM, Brown JT, et al. Effect of the attractive interactions on the phase behavior of the Gay-Berne liquid crystal model. J Chem Phys. 1996;105(10):4234–4249.
  • Brown JT, Allen MP, Martn del Ro E, et al. Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys Rev E. 1998;57(6):6685–6699.
  • Bates MA, Luckhurst GR. Computer simulation studies of anisotropic systems. xxvi. Monte carlo investigations of a Gay-Berne discotic at constant pressure. J Chem Phys. 1996;104(17):6696–6709.
  • Caprion D, Bellier-Castella L, Ryckaert JP. Influence of shape and energy anisotropies on the phase diagram of discotic molecules. Phys Rev E. 2003;67(4):041703.
  • Bellier-Castella L, Caprioni D, Ryckaert JP. Surface ordering of diskotic liquid crystals. J Chem Phys. 2004;121:4874–4883.
  • Chakrabarti D, Wales DJ. Energy landscape of a model discotic liquid crystal. Phys Rev E. 2008;77(5):051709.
  • Rull LF, Romero-Enrique JM. Nanodrops of discotic liquid crystals: a monte carlo study. Langmuir. 2017;33(42):11779–11787.
  • Mills SJ, Care CM, Neal MP, et al. Computer simulation of an unconfined liquid crystal film. Phys Rev E. 1998;58(3):3284–3294.
  • Finn JE, Monson PA. Prewetting at a fluid-solid interface via monte carlo simulation. Phys Rev A. 1989;39:6402–6408.
  • Rull LF, Romero-Enrique JM, Müller EA. Observation of surface nematization at the solid-liquid crystal interface via molecular simulation. J Phys Chem C. 2007;111:15998–16005.
  • Rull LF, Romero-Enrique JM, Fernandez-Nieves A. Computer simulations of nematic drops: coupling between drop shape and nematic order. J Chem Phys. 2012;137(3):034505.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego (USA): Academic Press; 1996.
  • Rull LF, Romero-Enrique JM. Computer simulation study of the nematic-vapour interface in the Gay-Berne model. Mol Phys. 2017;115(9–12):1214–1224.
  • Vanzo D, Ricci M, Berardi R, et al. Wetting behaviour and contact angles anisotropy of nematic nanodroplets on flat surfaces. Soft Matter. 2016;12(5):1610–1620.
  • Santiso EE, Herdes CM, Müller EA. On the calculation of solid-fluid contact angles from molecular dynamics. Entropy. 2013;15:3734–3745.
  • Barbero G. Surface geometry and induced orientation of a nematic liquid crystal. Lett Nuovo Cimento Sov Ital Fis. 1980;29:553–559.
  • Romero-Enrique JM, Pham CT, Patrício P. Scaling of the elastic contribution to the surface free energy of a nematic liquid crystal on a sawtoothed substrate. Phys Rev E. 2010;82:011707.
  • Vilfran I, Vilfran M, Zumer S. Defect structures of nematic liquid crystals in cylindrical cavities. Phys Rev A. 1991;43:6875–6880.
  • Crawford GP, Allender DW, Doane JW. Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities. Phys Rev A. 1992;45:8692–8708.
  • Kralj S, Zumer S. Saddle-splay elasticity of nematic structures confined to a cylindrical capillary. Phys Rev E. 1995;51:366–379.
  • De Luca G, Rey AD. Point and ring defects in nematics under capillary confinement. J Chem Phys. 2007;127:104902.
  • Gilli JM, Thiberge S, Vierheilig A, et al. Inversion walls in homeotropic nematic and cholesteric layers. Liq Crys. 1997;23:619–628.
  • Thiberge S, Chevallard C, Gilli JM, et al. Critical radius of loop defects in homeotropic nematic liquid crystals. Liq Crys. 1999;26:1225–1234.
  • Terenjev EM. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys Rev E. 1995;51(2):1330–1337.
  • Verhoeff AA, Bakelaar IA, Otten RHJ, et al. Tactoids of plate-like particles: size, shape, and director field. Langmuir. 2010;27(1):116–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.