153
Views
0
CrossRef citations to date
0
Altmetric
Letter to the Editor

Electrically-controlled generation and switching of arbitrary vector vortex beams on multiple hybrid-order Poincaré spheres based on liquid crystal devices

, , , , , , , & show all
Pages 2010-2018 | Received 27 Apr 2023, Accepted 26 Jun 2023, Published online: 07 Jul 2023

References

  • Shen YJ, Yang XL, Naidoo D, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica. 2020;7(7):820–831. doi: 10.1364/OPTICA.382994
  • Shen YJ, Wang XJ, Xie ZW, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8(1):90. doi: 10.1038/s41377-019-0194-2
  • Chen RP, Chew KH, Zhou GQ, et al. Vectorial effect of hybrid polarization states on the collapse dynamics of a structured optical field. Opt Express. 2016;24(24):28143–28153. doi: 10.1364/OE.24.028143
  • Bellei F, Cartwright AP, McCaughan AN, et al. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications. Opt Express. 2016;24(4):3248–3257. doi: 10.1364/OE.24.003248
  • Yang B, Przybilla F, Mestre M, et al. Large parallelization of STED nanoscopy using optical lattices. Opt Express. 2014;22(5):5581–5589. doi: 10.1364/OE.22.005581
  • Wang FL, Zhang XC, Xiong R, et al. Depth multiplexing in an orbital angular momentum holography based on random phase encoding. Opt Express. 2022;30(18):31863–31871. doi: 10.1364/OE.470160
  • Bahari B, Hsu LY, Pan SH, et al. Photonic quantum hall effect and multiplexed light sources of large orbital angular momenta. Nat Phys. 2021;17(6):700–703. doi: 10.1038/s41567-021-01165-8
  • Lou SZ, Zhou YQ, Yuan YD, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincare sphere based on liquid crystal device. Opt Express. 2019;27(6):8596–8604. doi: 10.1364/OE.27.008596
  • Zheng SJ, Liu HJ, Lin AY, et al. Scalar vortex beam produced through faithful reconstruction of polarization holography. Opt Express. 2021;29(26):43193–43202. doi: 10.1364/OE.445360
  • Xu CT, Chen P, Zhang YH, et al. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Appl Phys Lett. 2021;118(15):151102. doi: 10.1063/5.0041117
  • Xu CT, Liu BH, Peng C, et al. Heliconical cholesterics endows spatial phase modulator with an electrically customizable working band. Adv Opt Mater. 2022;10(19):2201088. doi: 10.1002/adom.202201088
  • Zhang HQ, Duan W, Wei T, et al. Broadband multichannel optical vortex generators via patterned double-layer reverse-twist liquid crystal polymer. Crystals. 2020;10(10):882. doi: 10.3390/cryst10100882
  • Schaal F, Rutloh M, Weidenfeld S, et al. Optically addressed modulator for tunable spatial polarization control. Opt Express. 2018;26(21):28119–28130. doi: 10.1364/OE.26.028119
  • Duan ZH, Miyamoto Y, Takeda M. Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator. Opt Express. 2006;14(25):12109–12121. doi: 10.1364/OE.14.012109
  • Nagali E, Sciarrino F, De Martini F, et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys Rev Appl. 2009;103(1):013601. doi: 10.1103/PhysRevLett.103.013601
  • Fang XJ, Wei K, Zhao T, et al. High spatial resolution multi-channel optically pumped atomic magnetometer based on a spatial light modulator. Opt Express. 2020;28(18):26447–26460. doi: 10.1364/OE.398540
  • Zhang H, Wang HY, Lu XY, et al. Statistical properties of a partially coherent vector beam with controllable spatial coherence, vortex phase, and polarization. Opt Express. 2022;30(17):29923–29939. doi: 10.1364/OE.465274
  • Wang RS, He SS, Chen SZ, et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincare sphere. Opt Lett. 2018;43(15):3570–3573. doi: 10.1364/OL.43.003570
  • He YL, Liu ZX, Liu YC, et al. Higher-order laser mode converters with dielectric metasurfaces. Opt Lett. 2015;40(23):5506–5509. doi: 10.1364/OL.40.005506
  • Wei BY, Qi SX, Liu S, et al. Auto-transition of vortex-to vector-airy beams via liquid crystal q-airy-plates. Opt Express. 2019;27(13):18848–18857. doi: 10.1364/OE.27.018848
  • Chen P, Ge SJ, Duan W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding. ACS Photonics. 2017;4(6):1333–1338. doi: 10.1021/acsphotonics.7b00263
  • Xu R, Chen P, Tang J, et al. Perfect higher-order Poincare sphere beams from digitalized geometric phases. Phys Rev Appl. 2018;10(3):034061. doi: 10.1103/PhysRevApplied.10.034061
  • Milione G, Evans S, Nolan DA, et al. Higher order pancharatnam-berry phase and the angular momentum of light. Phys Rev Lett. 2012;108(19):190401. doi: 10.1103/PhysRevLett.108.190401
  • Yi XN, Liu YC, Ling XH, et al. Hybrid-order Poincare sphere. Phys Rev Appl. 2015;91(2):023801. doi: 10.1103/PhysRevA.91.023801
  • Arora G, Ruchi, Senthilkumaran P. Hybrid order Poincare spheres for stokes singularities. Opt Lett. 2020;45(18):5136–5139. doi: 10.1364/OL.400946
  • Liu YY, Liu ZX, Zhou JX, et al. Measurements of pancharatnam-berry phase in mode transformations on hybrid-order Poincare sphere. Opt Lett. 2017;42(17):3447–3450. doi: 10.1364/OL.42.003447
  • Lin TG, Xie J, Zhou YJ, et al. Recent advances in photoalignment liquid crystal polarization gratings and their applications. Crystals. 2021;11(8):080900. doi: 10.3390/cryst11080900
  • Choi TH, Do SM, Jeon BG, et al. Low-power control of haze using a liquid-crystal phase-grating device with two-dimensional polymer walls. Opt Express. 2019;27(3):3014–3029. doi: 10.1364/OE.27.003014
  • He ZQ, Tan GJ, Chanda D, et al. Novel liquid crystal photonic devices enabled by two-photon polymerization invited. Opt Express. 2019;27(8):11472–11491. doi: 10.1364/OE.27.011472
  • Zhang BZ, Zhao DM. Focusing properties of fresnel zone plates with spiral phase. Opt Express. 2010;18(12):12818–12823. doi: 10.1364/OE.18.012818
  • Wang Q, Sun XW, Shum P, et al. Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate. Opt Express. 2005;13(25):10285–10291. doi: 10.1364/OPEX.13.010285
  • Schemmel P, Pisano G, Maffei B. A modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Opt Express. 2014;22(12):14712–14726. doi: 10.1364/OE.22.014712
  • Yu J, Bai ZY, Zhu GX, et al. 3D nanoprinted kinoform spiral zone plates on fiber facets for high-efficiency focused vortex beam generation. Opt Express. 2020;28(25):38127–38139. doi: 10.1364/OE.411209
  • Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics. 2011;3(2):161–204. doi: 10.1364/AOP.3.000161
  • Ma HT, Hu HJ, Xie WK, et al. Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator. Opt Eng. 2013;52(9):091721. doi: 10.1117/1.OE.52.9.091721
  • Ostrovsky AS, Rickenstorff-Parrao C, Arrizon V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett. 2013;38(4):534–536. doi: 10.1364/OL.38.000534
  • Wu H, Hu W, Hu HC, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt Express. 2012;20(15):16684–16689. doi: 10.1364/OE.20.016684
  • Duan W, Chen P, Ge SJ, et al. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals. Opt Express. 2017;25(13):14059–14064. doi: 10.1364/OE.25.014059
  • Zhang YC, Gao N, Xie CQ. Using circular Dammann gratings to produce impulse optic vortex rings. Appl Phys Lett. 2012;100(4):041107. doi: 10.1063/1.3679111
  • Kim H, Park J, Cho SW, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 2010;10(2):529–536. doi: 10.1021/nl903380j
  • Tam AMW, Fan F, Du T, et al. Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states. Phys Rev Appl. 2017;7(3):034010. doi: 10.1103/PhysRevApplied.7.034010
  • Chen P, Wei BY, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res. 2015;3(4):133–139. doi: 10.1364/PRJ.3.000133
  • Fan F, Du T, Srivastava AK, et al. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate. Opt Express. 2012;20(21):23036–23043. doi: 10.1364/OE.20.023036
  • Lin TG, Zhou YQ, Yuan YD, et al. Transflective spin-orbital angular momentum conversion device by three-dimensional multilayer liquid crystalline materials. Opt Express. 2018;26(22):29244–29252. doi: 10.1364/OE.26.029244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.