131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spider dragline silk fibres maintain rectangular columnar liquid crystalline phase

ORCID Icon &
Pages 2166-2175 | Received 29 Jul 2022, Accepted 11 Jul 2023, Published online: 25 Jul 2023

References

  • Lewis RV. Spider silk: ancient ideas for new biomaterials. Chem Rev. 2006;106(9):3762–3774. doi: 10.1021/cr010194g
  • Agnieray H, Glasson JL, Chen Q, et al. Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans. 2021;49(2):953–964. doi: 10.1042/BST20200896
  • Heidebrecht A, Scheibel T. Recombinant production of spider silk proteins. Adv Appl Microbiol. 2013;82:115–153.
  • Koeppel A, Holland C. Progress and trends in artificial silk spinning: A systematic review. ACS Biomater Sci Eng. 2017;3(3):226–237. doi: 10.1021/acsbiomaterials.6b00669
  • Xu J, Dong Q, Yu Y, et al. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci USA. 2018;115(35):8757–8762. doi: 10.1073/pnas.1806805115
  • Zhang X, Xia L, Day BA, et al. CRISPR/Cas9 initiated transgenic silkworms as a natural spinner of spider silk. Biomacromolecules. 2019;20(6):2252–2264. doi: 10.1021/acs.biomac.9b00193
  • Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol. 2015;11(5):309–315. doi: 10.1038/nchembio.1789
  • Andersson M, Jia Q, Abella A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol. 2017;13(3):262–264. doi: 10.1038/nchembio.2269
  • Holland C, Terry AE, Porter D, et al. Comparing the rheology of native spider and silkworm spinning dope. Nat Mater. 2006;5(11):870–874. doi: 10.1038/nmat1762
  • Laity PR, Holland C. Seeking solvation: exploring the role of protein hydration in silk gelation. Molecules. 2022;27(2):551. doi: 10.3390/molecules27020551
  • Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424(6952):1057–1061. doi: 10.1038/nature01809
  • Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature. 2001;410(6828):541–548. doi: 10.1038/35069000
  • Walker AA, Holland C, Sutherland TD. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk. Proc Royal Soc B. 2015;282:20150259. doi: 10.1098/rspb.2015.0259
  • Lin TY, Masunaga H, Sato R, et al. Liquid crystalline granules align in a hierarchical structure to produce spider dragline microfibrils. Biomacromolecules. 2017;18(4):1350–1355. doi: 10.1021/acs.biomac.7b00086
  • Valluzzi R, He SJ, Gido SP, et al. Bombyx mori silk fibroin liquid crystallinity and crystallization at aqueous fibroin-organic solvent interfaces. Int J Biol Macromol. 1999;24:227–236. doi: 10.1016/S0141-8130(99)00005-7
  • Yoshioka T, Tashiro K, Ohta N. Molecular orientation enhancement of silk by the hot-stretching-induced transition from α-helix-HFIP complex to β-sheet. Biomacromolecules. 2016;17:1437–1448. doi: 10.1021/acs.biomac.6b00043
  • Rosa CD, Scoti M, Girolamo RD, et al. Polymorphism in polymers: A tool to tailor material’s properties. Polym Cryst. 2020;3:e10101. doi: 10.1002/pcr2.10101
  • Yoshioka T, Kameda T. Hexagonal packing of nanofibrils in Bombyx mori silkworm silk revealed by small-angle X-ray scattering analysis. J Silk Sci Tech Jpn. 2020;28:127–133.
  • Trancik JE, Czernuszka JT, Bell FI, et al. Nanostructural features of a spider dragline silk as revealed by electron and X-ray diffraction studies. Polymer. 2006;47(15):5633–5642. doi: 10.1016/j.polymer.2005.01.110
  • Yang Z, Grubb DT, Jelinski LW. Small-angle X-ray scattering of spider dragline silk. Macromolecules. 1997;30(26):8254–8261. doi: 10.1021/ma970548z
  • Knight DP, Vollrath F. Liquid crystals and flow elongation in a spider’s silk production line. Proc Royal Soc B. 1999;266:519–523. doi: 10.1098/rspb.1999.0667
  • Willcox PJ, Gido SP, Muller W, et al. Evidence of a cholesteric liquid crystalline phase in natural silk spinning processes. Macromolecules. 1996;29(15):5106–5110. doi: 10.1021/ma960588n
  • Knight D, Vollrath F. Hexagonal columnar liquid crystal in the cells secreting spider silk. Tissue Cell. 1999;31(6):617–620. doi: 10.1054/tice.1999.0076
  • Kerkam K, Viney C, Kaplan D, et al. Liquid crystallinity of natural silk secretions. Nature. 1991;349(6310):596–598. doi: 10.1038/349596a0
  • Ohta K. Linear algebraic proof and examples of composite-lattice-based liquid crystalline phases. Mol Cryst Liq Cryst. 2017;658(1):13–31. doi: 10.1080/15421406.2017.1408995
  • Ohta K. Physics and chemistry of molecular assemblies. Singapore: World Scientific; 2019. doi: 10.1142/11703
  • Huang X, Liu G, Wang X. New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater. 2012;24(11):1482–1486. doi: 10.1002/adma.201104668
  • Keten S, Buehler MJ. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J R Soc Interface. 2010;7(53):1709–1721. doi: 10.1098/rsif.2010.0149
  • Sintya E, Alam P. Localised semicrystalline phases of MaSp1 proteins show high sensitivity to overshearing in β-sheet nanocrystals. Int J Biol Macromol. 2016;92:1006–1011. doi: 10.1016/j.ijbiomac.2016.07.081
  • Patil K, Rajkhowa R, Wang X, et al. Review on fabrication and applications of ultrafine particles from animal protein fibres. Fibers Polym. 2014;15(2):187–194. doi: 10.1007/s12221-014-0187-y
  • Sutherland TD, Young JH, Weisman S, et al. Insect silk: one name, many materials. Annu Rev Entomol. 2010;55(1):171–188. doi: 10.1146/annurev-ento-112408-085401
  • Gosline JM, Guerette PA, Ortlepp CS, et al. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol. 1999;202(23):3295–3303. doi: 10.1242/jeb.202.23.3295
  • Yazawa K, Sasaki U. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity. Int J Biol Macromol. 2021;168:550–557. doi: 10.1016/j.ijbiomac.2020.12.076
  • Shimizu N, Mori T, Nagatani Y, et al. BL-10C, the small-angle X-ray scattering beamline at the photon factory. AIP Conf Proc. 2019;2054:060041.
  • Hammersley AP, Svensson SO, Hanfland M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res. 1996;14(4–6):235–248. doi: 10.1080/08957959608201408
  • Jackson C, O’Brien JP. Molecular weight distribution of Nephila clavipes dragline silk. Macromolecules. 1995;28(17):5975–5977. doi: 10.1021/ma00121a042
  • Matsuhira T, Osaki S. Molecular weight of Nephila clavata spider silk. Polym J. 2015;47(6):456. doi: 10.1038/pj.2015.10
  • Ohta K, Takenaka O, Hasebe H, et al. Discotic liquid crystals of transition metal complexes 7: dimer discotic rectangular ordered mesophase in bis(p-n-alkoxybiphenylbutane-1,3-dionato)copper (II) complexes. Mol Cryst Liq Cryst. 1991;195:135–148. doi: 10.1080/00268949108030896
  • Osaki S. Is the mechanical strength of spider’s drag-lines reasonable as lifeline? Int J Biol Macromol. 1999;24(2–3):283–287. doi: 10.1016/S0141-8130(98)00091-9
  • Simmons AH, Michal CA, Jelinski LW. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science. 1996;271(5245):84–87. doi: 10.1126/science.271.5245.84
  • Termonia Y. Molecular modeling of spider silk elasticity. Macromolecules. 1994;27(25):7378–7381. doi: 10.1021/ma00103a018
  • Gosline JM, DeMont ME, Denny MW. The structure and properties of spider silk. Endeavour. 1986;10(1):37–43. doi: 10.1016/0160-9327(86)90049-9
  • Glišović A, Vehoff T, Davies RJ, et al. Strain dependent structural changes of spider dragline silk. Macromolecules. 2008;41(2):390–398. doi: 10.1021/ma070528p
  • Tanner D, Fitzgerald JA, Phillips BR. The Kevlar story—an advanced materials case study. Ang Chem Int Ed. 1989;28:649–654. doi: 10.1002/anie.198906491
  • Chatzi EG, Koenig JL. Morphology and structure of Kevlar fibers: A review. Polym Plast Technol Eng. 1987;26(3–4):229–270. doi: 10.1080/03602558708071938
  • Liu Y, Shao Z, Vollrath F. Extended wet-spinning can modify spider silk properties. Chem Commun. 2005;19:2489–2491. doi: 10.1039/b500319a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.