199
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and mesomorphic properties of novel multi-arm side-chain liquid crystal polymers with different terminal substituents

, , , , , & show all
Pages 2244-2258 | Received 14 Apr 2023, Accepted 03 Aug 2023, Published online: 09 Aug 2023

References

  • Donaldson T, Henderson PA, Achard MF, et al. Chiral liquid crystal tetramers. J Mater Chem. 2011;21(29):10935–10941. doi: 10.1039/c1jm10992h
  • Henderson PA, Imrie CT. Semiflexible liquid crystalline tetramers as models of structurally analogous copolymers. Macromolecules. 2005;38(8):3307–3311. doi: 10.1021/ma0502304
  • Donaldson T, Staesche H, Lu ZB, et al. Symmetric and non-symmetric chiral liquid crystal dimers. Liq Cryst. 2010;37:1097–1110. doi: 10.1080/02678292.2010.494412
  • Wicklein A, Lang A, Muth M, et al. Swallow-tail substituted liquid crystalline perylene bisimides: synthesis and thermotropic properties. J Am Chem Soc. 2009;131(40):14442–14453. doi: 10.1021/ja905260c
  • Balamurugan S, Kannan P. Synthesis and characterization of symmetrical banana shaped liquid crystalline polyethers. J Mol Struct. 2009;934(1–3):44–52. doi: 10.1016/j.molstruc.2009.06.019
  • Ting TX, Sarjadi MS, Rahman ML. Influences of central units and terminal chains on the banana-shaped liquid crystals. Crystals. 2020;10(10):857. doi: 10.3390/cryst10100857
  • Osman F, Yeap G-Y, Maeta N, et al. Liquid crystalline non-linear S-shaped oligomers consisting of azobenzene and biphenylene units: synthesis, characterisation and influence of central spacer. Liq Cryst. 2017;44(14–15):2355–2365. doi: 10.1080/02678292.2017.1360522
  • Varia M, Kumar S, Prajapati A. H-shaped azoester-oxymethylene containing twin liquid crystalline compounds. Liq Cryst. 2012;39(3):365–371. doi: 10.1080/02678292.2012.657696
  • Sato M, Yoshizawa A. Electro‐optical switching in a blue phase III exhibited by a chiral liquid crystal oligomer. Adv Mater. 2007;19(23):4145–4148. doi: 10.1002/adma.200700903
  • Wang D, Huang Y, Lv J-M, et al. Multi-arm azobenzene liquid crystal based on cholic acid: synthesis and mesophase properties. Liq Cryst. 2018;45(12):1813–1824. doi: 10.1080/02678292.2018.1494341
  • Zheng Z-G, Li Y, Bisoyi HK, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature. 2016;531(7594):352–356. doi: 10.1038/nature17141
  • Meier H, Lehmann M, Holst HC, et al. Star-shaped conjugated compounds forming nematic discotic systems. Tetrahedron. 2004;60(32):6881–6888. doi: 10.1016/j.tet.2004.06.012
  • Olate FA, Ulloa JA, Vergara JM, et al. Columnar liquid crystalline tris-(ether) triazines with pendant 1, 3, 4-thiadiazole groups: synthesis, mesomorphic, luminescence, solvatofluorochromic and electrochemical properties. Liq Cryst. 2016;43(6):811–827. doi: 10.1080/02678292.2016.1144813
  • Brostow W, Jaklewicz M. Friction and scratch resistance of polymer liquid crystals: effects of magnetic field orientation. J Mater Res. 2004;19(4):1038–1042. doi: 10.1557/JMR.2004.0135
  • Ganicz T, Pakula T, Fortuniak W, et al. Linear and hyperbranched liquid crystalline polysiloxanes. Polymer. 2005;46(25):11380–11388. doi: 10.1016/j.polymer.2005.10.052
  • Lee SJ, Lee J, Lee SW, et al. Photoluminescent supramolecular liquid crystals formed by hydrogen bonding of non-mesogenic donor and acceptors. J Ind Eng Chem. 2012;18(2):767–774. doi: 10.1016/j.jiec.2011.11.123
  • Patel BH, Doshi A. Synthesis and liquid crystal properties of a novel homologous series 4-(4′-n-Alkoxy benzoyloxy) Benzyl Benzoates. Mol Cryst Liq Cryst. 2014;605(1):61–69. doi: 10.1080/15421406.2014.884399
  • Araki K, Yamamoto T, Tanaka R, et al. Stereoselective synthesis and physicochemical properties of liquid‐crystal compounds possessing a trans‐2, 5‐disubstituted tetrahydropyran ring with negative dielectric anisotropy. Chem A Eur J. 2015;21(6):2458–2466. doi: 10.1002/chem.201405495
  • Solanki R, Sharma VS, Patel R. The effect of position of octadecyloxy tail on the formation of liquid crystal with chalconyl-ester and chalconyl-vinyl ester series: comparison with corresponding linkage group. Mol Cryst Liq Cryst. 2017;643(1):216–232. doi: 10.1080/15421406.2016.1272222
  • Alici O, Karatas I. Novel liquid crystal aldoximes and aldoxime ethers: synthesis, characterization and liquid crystal behavior. J Mol Liq. 2016;221:1243–1248. doi: 10.1016/j.molliq.2015.04.016
  • Bao R, Pan M, Qiu JJ, et al. Synthesis and characterization of six-arm star-shaped liquid crystalline cyclotriphosphazenes. Chin Chem Lett. 2010;21(6):682–685. doi: 10.1016/j.cclet.2009.12.020
  • Selvarasu C, Kannan P. Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations. J Mol Struct. 2016;1125:234–240. doi: 10.1016/j.molstruc.2016.06.081
  • He C, Zhang C, Zhang O. Synthesis and thermal properties of polythioether‐based liquid‐crystalline polymers containing azobenzene in the side chain. Polym Int. 2009;58(9):1071–1077. doi: 10.1002/pi.2635
  • He XZ, Gao YF, Zheng JJ, et al. Chiral photosensitive side-chain liquid crystalline polymers—synthesis and characterization. Colloid Polym Sci. 2016;294(11):1823–1832. doi: 10.1007/s00396-016-3939-y
  • Li Z, Zhang Y, Zhu L, et al. Efficient synthesis of photoresponsive azobenzene-containing side-chain liquid crystalline polymers with high molecular weights by click chemistry. Poly Chem. 2010;1(9):1501–1511. doi: 10.1039/c0py00138d
  • Amer WA, Wang L, Amin AM, et al. Liquid‐crystalline azobenzene‐containing ferrocene‐based polymers: study on synthesis and properties of main‐chain ferrocene‐based polyesters with azobenzene in the side chain. Polym Adv Technol. 2013;24(2):181–190. doi: 10.1002/pat.3068
  • Cho W, Lee JW, Gal Y-S, et al. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes. Mater Chem Phys. 2014;143(3):904–907. doi: 10.1016/j.matchemphys.2013.11.062
  • He X, Gao C, Sun W, et al. Synthesis and photoresponsive behavior of azobenzene‐containing side‐chain liquid crystalline diblock polymers with polypeptide block. J Polym Sci Part A. 2013;51(5):1040–1050. doi: 10.1002/pola.26472
  • Wen GH, Zhang B, Xie HL, et al. Microphase separation facilitating and stabilizing hierarchical segment self-assembly of combined main-chain/side-chain liquid crystalline polymer in diblock copolymer. Macromolecules. 2013;46(13):5249–5259. doi: 10.1021/ma400325g
  • Zhang L, Chen S, Zhao H, et al. Synthesis and properties of a series of mesogen-jacketed liquid crystalline polymers with polysiloxane backbones. Macromolecules. 2010;43(14):6024–6032. doi: 10.1021/ma100847g
  • Chambers M, Verduzco R, Gleeson JT, et al. Calamitic liquid‐crystalline elastomers swollen in bent‐core liquid‐crystal solvents. Adv Mater. 2009;21(16):1622–1626. doi: 10.1002/adma.200802739
  • Imrie C, Karasz F, Attard GS. The effect of molecular weight on the thermal properties of polystyrene-based sidechain liquid-crystalline polymers. J Macromol Sci A. 1994;31(9):1221–1232. doi: 10.1080/10601329409351547
  • Xu H, Yang B, Wang J, et al. Preparation, thermal properties, and T g increase mechanism of poly (acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites. Macromolecules. 2005;38(25):10455–10460. doi: 10.1021/ma0516687
  • Jia Y, Zhang B, Feng Z, et al. Synthesis and characterization of side-chain liquid crystalline polymer containing dichroic dye monomer. Eur Polym J. 2003;39(8):1701–1706. doi: 10.1016/S0014-3057(03)00067-3
  • Kuiper S, Hendriks B. Variable-focus liquid lens for miniature cameras. Appl Phys Lett. 2004;85(7):1128–1130. doi: 10.1063/1.1779954
  • Ren H, Fox D, Anderson PA, et al. Tunable-focus liquid lens controlled using a servo motor. Opt Express. 2006;14(18):8031–8036. doi: 10.1364/OE.14.008031
  • Zhi J, Zhang B, Zang B, et al. Synthesis and properties of photochromic cholesteric liquid crystalline polysiloxane containing chiral mesogens and azobenzene photochromic groups. J Appl Polym Sci. 2002;85(10):2155–2162. doi: 10.1002/app.10802
  • Luo CC, Sun SL, Wang YS, et al. The effect of various functional groups on mesophase behavior and optical property of blue phase liquid crystal compounds based on (−)‑menthol. J Mol Liq. 2018;269:755–765. doi: 10.1016/j.molliq.2018.08.100
  • Ma YR, Zhang XS, Xie X, et al. Effect of chiral monomer containing D (+)-camphoric acid on the optical properties and phase behaviours of side-chain cholesteric liquid crystal polymers. Liq Cryst. 2021;48(5):699–712. doi: 10.1080/02678292.2020.1813340
  • Babak NL, Shishkin OV, Shishkina SV, et al. Synthesis and spatial structure of new chiral dopants from allobetuline series for cholesteric liquid-crystal compositions. Struct Chem. 2016;27(1):295–303. doi: 10.1007/s11224-015-0700-y
  • Gevorgyan A, Kocharian A, Vardanyan G. Circular dichroism and absorption in a finite cholesteric liquid crystal layer with an isotropic defect layer inside. Liq Cryst. 2016;43(4):448–461. doi: 10.1080/02678292.2015.1118768
  • Honma M, Takahashi N, Nose T. Optical properties of a dichroic dye-doped liquid-crystal grating and its application to optical rotation measurement. Appl Opt. 2017;56(21):5849–5856. doi: 10.1364/AO.56.005849
  • Kutulya L, Vashchenko V, Semenkova G, et al. Chiral organic compounds in liquid crystal systems with induced helical structure. Mol Cryst Liq Cryst. 2001;361(1):125–134. doi: 10.1080/10587250108025729
  • Nastishin YA, Smalyukh I. Pretransition optical rotation in the isotropic phase of a cholesteric liquid crystal. Opt Spectrosc. 1998;85(3):465–468.
  • Saito K, Tatsuma T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 2018;18(5):3209–3212. doi: 10.1021/acs.nanolett.8b00929
  • Salamończyk M, Vaupotič N, Pociecha D, et al. Multi-level chirality in liquid crystals formed by achiral molecules. Nat Commun. 2019;10(1):1922. doi: 10.1038/s41467-019-09862-y
  • Yoshioka T, Alam MZ, Ogata T, et al. Photochemical tuning of the helical structure of cholesteric liquid crystals by photoisomerization of chiral azobenzenes, and their structural effects. Liq Cryst. 2004;31(9):1285–1291. doi: 10.1080/02678290412331282118
  • Duan MY, Cao H, Wu Y, et al. Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization. Phys Chem Chem Phys. 2017;19(3):2353–2358. doi: 10.1039/C6CP07066C
  • Guo J, Chen F, Qu Z, et al. Electrothermal switching characteristics from a hydrogen-bonded polymer network structure in cholesteric liquid crystals with a double-handed circularly polarized light reflection band. J Phys Chem B. 2011;115(5):861–868. doi: 10.1021/jp109193m
  • Hsu CS. The application of side-chain liquid-crystalline polymers. Prog Polym Sci. 1997;22(4):829–871. doi: 10.1016/S0079-6700(97)00008-7
  • Liu JH, Chou YL, Balamurugan R, et al. Optical properties of chiral nematic side‐chain copolymers bearing cholesteryl and azobenzene building blocks. J Polym Sci Part A. 2011;49(3):770–780. doi: 10.1002/pola.24490
  • Shibaev P, Kopp V, Genack A. Photonic materials based on mixtures of cholesteric liquid crystals with polymers. J Phys Chem B. 2003;107(29):6961–6964. doi: 10.1021/jp0222189
  • Shibaev PV, Schlesier C, Uhrlass R, et al. Cholesteric materials with photonic band gap sensitive to shear deformation and mechanical sensors. Liq Cryst. 2010;37(12):1601–1604. doi: 10.1080/02678292.2010.522737
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469. doi: 10.1038/378467a0
  • Wang B, Du H, Zhang J. Synthesis and characterisation of new types of side chain cholesteryl polymers. Steroids. 2011;76(1–2):204–209. doi: 10.1016/j.steroids.2010.10.011
  • Ahmed H, Naoum M, Saad G. Mesophase behaviour of 1: 1 mixtures of 4-n-alkoxyphenylazo benzoic acids bearing terminal alkoxy groups of different chain lengths. Liq Cryst. 2016;43(9):1259–1267. doi: 10.1080/02678292.2016.1166528

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.