204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and properties of biphenyl liquid crystal diluters terminated by 2,2-difluorovinyloxyl for high birefringence liquid crystals

, , , &
Pages 2259-2267 | Received 03 May 2023, Accepted 05 Aug 2023, Published online: 20 Aug 2023

References

  • Hu W, Wang L, Wang M, et al. Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly. Nat Commun. 2021;21:1440. doi: 10.1038/s41467-021-21564-y
  • Yin K, Hsiang EL, Zou J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sic Appl. 2022;11:1344–1365. doi: 10.1038/s41377-022-00851-3
  • Xiong J, Hsiang EL, He Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sic Appl. 2021;10:216. doi: 10.1038/s41377-021-00658-8
  • Li Y, Yang Q, Xiong J, et al. 3D displays in augmented and virtual realities with holographic optical elements [invited]. Opt Express. 2021;29(26):42696–42712. doi: 10.1364/OE.444693
  • Wan D, Che Z, Mo L, et al. Synthesis and properties of fluorinated terphenyl liquid crystals utilizing 5, 6-dihydro-4H-cyclopenta [b] thiophene as core unit. J Mol Struct. 2022;1267:133612. doi: 10.1016/j.molstruc.2022.133612
  • Gao Y, Jiang Y, Hu W, et al. Cholesteryl liquid crystals as oil-based lubricant additives: effect of mesogenic phases and structures on tribological characteristics. Langmuir. 2019;35(21):6981–6992. doi: 10.1021/acs.langmuir.9b00459
  • Chen R, Huang Y, Li J, et al. High-frame-rate liquid crystal phase modulator for augmented reality displays. Liq Cryst. 2019;46(2):309–315. doi: 10.1080/02678292.2018.1499971
  • Huang Y, He Z, Wu ST. Fast-response liquid crystal phase modulators for augmented reality displays. Opt Express. 2017;25(26):32757–32766. doi: 10.1364/OE.25.032757
  • Li Y, Yang Q, Xiong J, et al. Dual-depth augmented reality display with reflective polarization-dependent lenses. Opt Express. 2021;29(20):31478–31487. doi: 10.1364/OE.435914
  • Bennis N, Jankowski T, Strzezysz O, et al. A high birefringence liquid crystal for lenses with large aperture. Sci Rep. 2022;12(1):14603. doi: 10.1038/s41598-022-18530-z
  • Zou J, Yang Z, Mao C, et al. Fast-response liquid crystals for 6G optical communications. Crystals. 2021;11(7):797. doi: 10.3390/cryst11070797
  • Maune H, Jost M, Reese R, et al. Microwave liquid crystal technology. Crystals. 2018;8(9):355. doi: 10.3390/cryst8090355
  • Yang Q, Zou J, Li Y, et al. Fast-response liquid crystal phase modulators with an excellent photostability. Crystals. 2020;10(9):765. doi: 10.3390/cryst10090765
  • Peng F, Chen Y, Wu ST, et al. Low loss liquid crystals for infrared applications. Liq Cryst. 2014;41:1545–1552. doi: 10.1080/02678292.2014.932452
  • Gou F, Chen R, Hu M, et al. Submillisecond-response polymer network liquid crystals for mid-infrared applications. Opt Express. 2018;26(23):29735–29743. doi: 10.1364/OE.26.029735
  • Camley R, Celinski Z, Garbovskiy Y, et al. Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges. Liq Cryst Rev. 2018;6(1):17–52. doi: 10.1080/21680396.2018.1509385
  • Zeng H, Gong S, Wang L, et al. A review of terahertz phase modulation from free space to guided wave integrated devices. Nanophotonics. 2022;11(3):415–437. doi: 10.1515/nanoph-2021-0623
  • Li J, Hu M, Chen R, et al. Low dielectric loss and good miscibility of the tolane liquid crystals by tuning their lateral substituents. J Mol Liq. 2021;325:115236. doi: 10.1016/j.molliq.2020.115236
  • Peng F, Chen Y, Yuan J, et al. Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy. J Mater Chem C. 2014;2(18):3597–3601. doi: 10.1039/C4TC00115J
  • Avci N. The influence of diluter system on polymer-stabilised blue-phase liquid crystals. Liq Cryst. 2018;45(3):459–467. doi: 10.1080/02678292.2017.1346825
  • Li P, Wang XQ, Shen D, et al. A long-term stable low-viscous self-organized blue phase liquid crystal superstructure with wide operation temperature range. Liq Cryst. 2022;49:192–200. doi: 10.1080/02678292.2021.1951383
  • Weng Q, Zhao L, Chen R, et al. Syntheses of new diluents for medium birefringence liquid crystals materials. Liq Cryst. 2019;46(5):700–707. doi: 10.1080/02678292.2018.1522002
  • Campbell NL, Kelly SM, Tuffin RP. Apolar 2‐alkoxyalkoxy‐substituted nematic liquid crystals. Liq Cryst. 2007;34(12):1443–1453. doi: 10.1080/02678290701742953
  • Song Q, Gauza S, Sun J, et al. Diluters’ effects on high ∆n and low-viscosity negative ∆ε terphenyl liquid crystals. Liq Cryst. 2009;36:865–872. doi: 10.1080/02678290903100521
  • Hu K, Weng Q, Chen R, et al. Benzoxazole-terminated liquid crystals with high birefringence and large dielectric anisotropy. Liq Cryst. 2020;47(9):1274–1280. doi: 10.1080/02678292.2019.1710777
  • Li J, Yang X, Gan N, et al. The effect of lateral fluorination on the properties of phenyl-tolane liquid crystals. Liq Cryst. 2015;42(3):397–403. doi: 10.1080/02678292.2014.995241
  • Hu M, Li J, Yang Z, et al. Synthesis and properties of difluoromethyleneoxy-bridged liquid crystals terminated by 2,2-difluorovinyloxy group. Liq Cryst. 2015;42:383–389. doi: 10.1080/02678292.2014.992375
  • Hu M, An Z, Li J, et al. Low mid-infrared absorption tolane liquid crystals terminated by 2,2-difluorovinyloxy: synthesis, characterization and properties. J Mater Chem C. 2016;4:4939–4945. doi: 10.1039/C6TC01249C
  • Chen T, Liu M, Ouyang H, et al. Study on dielectrics and low-temperature viscosity performance of high-frequency difluorovinyl liquid crystals. Proc Spie. 2019;10841:97–105.
  • Zhu S, Chen R, Zhang W, et al. Dissecting terminal fluorinated regulator of liquid crystals for fine-tuning intermolecular interaction and molecular configuration. J Mol Liq. 2020;310:113225. doi: 10.1016/j.molliq.2020.113225
  • Chen R, An Z, Wang W, et al. Improving UV stability of tolane-liquid crystals in photonic applications by the ortho fluorine substitution. Opt Mater Express. 2016;6(1):97–105. doi: 10.1364/OME.6.000097
  • Kirsch P. Fluorine in liquid crystal design for display applications. J Fluorine Chem. 2015;177:29–36. doi: 10.1016/j.jfluchem.2015.01.007
  • Hird M. Fluorinated liquid crystals-properties and applications. Chem Soc Rev. 2007;36:2070–2095. doi: 10.1039/b610738a
  • Chen R, Wang L, An Z, et al. Effect of π-conjugation units on the liquid crystal and photovoltaic performance of heterocyclic pyridine-based compounds. Liq Cryst. 2021;48(15):2178–2187. doi: 10.1080/02678292.2021.1934743
  • Chen R, An Z, Wang W, et al. Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study. Liq Cryst. 2017;44(10):1515–1524. doi: 10.1080/02678292.2017.1293853
  • Chen R, Jiang Y, Li J, et al. Dielectric and optical anisotropy enhanced by 1, 3-dioxolane terminal substitution on tolane-liquid crystals. J Mater Chem C. 2015;3(33):8706–8711. doi: 10.1039/C5TC01712B
  • Chen R, An Z, Li F, et al. Synthesis and physical properties of tolane liquid crystals containing 2, 3-difluorophenylene and terminated by a tetrahydropyran moiety. Liq Cryst. 2016;43(4):564–572. doi: 10.1080/02678292.2015.1125959
  • Shi D, Hu K, Chen P, et al. Improved nematic mesophase stability of benzoxazole-liquid crystals via modification of inter-ring twist angle of biphenyl unit. Liq Cryst. 2016;43(10):1397–1407. doi: 10.1080/02678292.2016.1177742
  • O’Hagan D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev. 2008;37(2):308–319. doi: 10.1039/B711844A
  • Berger R, Resnati G, Metrangolo P, et al. Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem Soc Rev. 2011;40(7):3496–3508. doi: 10.1039/c0cs00221f
  • Dziaduszek J, Kula P, Dàbrowski R, et al. General synthesis method of alkyl-alkoxy multi-fluorotolanes for negative high birefringence nematic mixtures. Liq Cryst. 2012;39:239–247. doi: 10.1080/02678292.2011.636457
  • Vuks MF. Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals. Opt Spectrosc. 1996;20:361–368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.