122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Helical polymerisation using a polymer network derived from a blue phase as a template for chirality transfer

ORCID Icon, , , , , , & show all
Pages 2268-2279 | Received 12 Mar 2023, Accepted 05 Aug 2023, Published online: 25 Aug 2023

References

  • Liu M, Zhang L, Wang T. Supramolecular chirality in self-assembled systems. Chem Rev. 2015;115:7304–7297. doi: 10.1021/cr500671p
  • Chang B, Li X, Sun T. Self-assembled chiral materials from achiral components or racemates. Eur Polym J. 2019;118:365–381. doi: 10.1016/j.eurpolymj.2019.05.061
  • Okamoto Y, Nakano T. Asymmetric polymerization. Chem Rev. 1994;94(2):349–372. doi: 10.1021/cr00026a004
  • Green M, Park J-W, Sato T, et al. The macromolecular route to chiral amplification. Angew Chem Int Ed. 1999;38(21):3138–3154. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3138:AID-ANIE3138>3.0.CO;2-C
  • Wu Z-Q, Nagai K, Banno M, et al. Enantiomer-selective and helix-sense-selective living block copolymerization of isocyanide enantiomers initiated by single-handed helical poly(phenyl isocyanide)s. J Am Chem Soc. 2009;131:6707–6718. doi: 10.1021/ja900036n
  • Stals PJM, Korevaar PA, Gillissen MAJ, et al. Symmetry breaking in the self-assembly of partially fluorinated benzene-1,3,5-tricarboxamides. Angew Chem Int Ed. 2012;51:11297–11301. doi: 10.1002/anie.201204727
  • Siriwardane DA, Kulikov O, Rokhlenko Y, et al. Stereocomplexation of helical polycarbodiimides synthesized from achiral monomers bearing isopropyl pendants. Macromolecules. 2017;50(23):9162–9172. doi: 10.1021/acs.macromol.7b01633
  • Karunakaran SC, Cafferty BJ, Weigert-Munoz A, et al. Spontaneous symmetry breaking in the formation of supramolecular polymers: implications for the origin of biological homochirality. Angew Chem Int Ed. 2019;58(5):1453–1457. doi: 10.1002/anie.201812808
  • Guijarro A, Yus M. The origin of chirality in the molecules of life. Cambridge: RSC Publishing; 2009.
  • Tschierske C, Dressel C. Mirror symmetry breaking in liquids and their impact on the development of homochirality in abiogenesis: emerging Proto-RNA as source of biochirality? Symmetry. 2020;12(7):1098. doi: 10.3390/sym12071098
  • Yashima E, Ouska N, Taura D, et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev. 2016;116:13752–13990. doi: 10.1021/acs.chemrev.6b00354
  • Xing PY, Zhao YL. Controlling supramolecular chirality in multicomponent self-assembled systems. Acc Chem Res. 2018;51(9):2324–2334. doi: 10.1021/acs.accounts.8b00312
  • Pavlov VA, Shushenachev YV, Zlotin S. Сhiral and racemic fields concept for understanding of the homochirality origin, asymmetric catalysis, chiral superstructure formation from achiral molecules, and B-Z DNA conformational transition. Symmetry. 2019;11(5):649. doi: 10.3390/sym11050649
  • Buhse T, Cruz J-M, Noble-Teran ME, et al. Spontaneous deracemizations. Chem Rev. 2021;121(4):2147–2229. doi: 10.1021/acs.chemrev.0c00819
  • Akagi K, Piao G, Kaneko S, et al. Helical polyacetylene synthesized with a chiral nematic reaction field. Science. 1998;282(5394):1683–1686. doi: 10.1126/science.282.5394.1683
  • Arlegui A, Soler B, Galindo A, et al. Spontaneous mirror-symmetry breaking coupled to top-bottom chirality transfer: from porphyrin self-assembly to scalemic diels-alder adducts. Chem Commun. 2019;55:12219–12222. doi: 10.1039/C9CC05946F
  • Sevim S, Sorrenti A, Vale JP, et al. Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows. Nat Commun. 2022;13(1):1766. doi: 10.1038/s41467-022-29425-y
  • Lee J-J, Kim B-C, Choi H-J, et al. Inverse helical nanofilament networks serving as a chiral nanotemplate. ACS Nano. 2020;14(5):5243–5250. doi: 10.1021/acsnano.0c00393
  • Crooker PI. In Kitzerow HS, Bahr C, editors. Chirality in liquid crystals. New York: Springer; 2001. p. 186–222. doi: 10.1007/b97374
  • Yoshizawa A. Material design for blue phase liquid crystals and their electro-optical effects. RSC Adv. 2013;3(48):25475–25497. doi: 10.1039/c3ra43546f
  • Higashiguchi K, Yasui K, Kikuchi H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope. J Am Chem Soc. 2008;130(20):6326–6327. doi: 10.1021/ja801553g
  • Castles F, Day FV, Morris SM, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat Mater. 2012;11(7):599–603. doi: 10.1038/nmat3330
  • Yoshizawa A, Iwamochi H, Segawa S, et al. The role of a liquid crystal oligomer in stabilizing blue phases. Liq Cryst. 2007;34(9):1039–1044. doi: 10.1080/02678290701565867
  • Iwamochi H, Yoshizawa A. Electro-optical switching in blue phases induced using a binary system of a T-shaped nematic liquid crystal and a chiral compound. Appl Phys Express. 2008;1:111801. doi: 10.1143/APEX.1.111801
  • Yoshizawa A, Sato M, Rokunohe J. A blue phase observed for a novel chiral compound possessing molecular biaxiality. J Mater Chem. 2005;15(32):3285–3290. doi: 10.1039/b506167a
  • Sato M, Yoshizawa A. Electro-optical switching in a blue phase III exhibited by a chiral liquid crystal oligomer. Adv Mater. 2007;19(23):4145–4148. doi: 10.1002/adma.200700903
  • Iwamochi H, Hirose T, Kogawa Y, et al. Chiral T-shaped semiflexible compound exhibiting a wide temperature range blue phase III. Chem Lett. 2010;39(3):170–171. doi: 10.1246/cl.2010.170
  • Yoshizawa A. Liquid crystal supermolecules stabilizing an optically isotropic phase with frustrated molecular organization. Polym J. 2012;44(6):490–502. doi: 10.1038/pj.2012.55
  • Hirose T, Yoshizawa A. Comparison of electro-optical switching between polymer-stabilized cubic and amorphous blue phases. Liq Cryst. 2015;42:1290–1297. doi: 10.1080/02678292.2015.1048755
  • Kurata M, Yoshizawa A. The formation of a chiral supramolecular structure acting as a template for chirality transfer. Chem Commun. 2020;56(59):8289–8292. doi: 10.1039/D0CC02413A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.