185
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preparation and application of broadband reflective polymer-stabilised cholesteric liquid with nanoscale fibres

, , , , , , & show all
Pages 2280-2294 | Received 18 Jun 2023, Accepted 06 Aug 2023, Published online: 22 Aug 2023

References

  • Gollapelli B, Suguru Pathinti R, Vallamkondu J. Carbon quantum dots doped cholesteric liquid crystal films and microdroplets for anti-counterfeiting. ACS Appl Nano Mater. 2022;5(8):11912–11922. doi: 10.1021/acsanm.2c02933
  • Zhang HM, Yu P, Zhong TJ, et al. Preparation of chiral polymer/cholesteric liquid crystals composite films with broadband reflective capability for smart windows and thermal management of buildings. Opti Mater. 2021;121:111611. doi: 10.1016/j.optmat.2021.111611
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer‐stabilized cholesteric liquid crystals via thiol–acrylate Chemistry. Angew Chemie Int Ed. 2019;58(20):6698–6702. doi: 10.1002/anie.201902681
  • Oh SW, Ji SM, Han CH, et al. A cholesteric liquid crystal smart window with a low operating voltage. Dyes Pigm. 2022;197:109843. doi:10.1016/j.dyepig.2021.109843
  • Tseng HY, Chang LM, Lin KW, et al. Smart window with active-passive hybrid control. Materials. 2020;13(18):4137. doi: 10.3390/ma13184137
  • Sentjens H, Kragt AJJ, Lub J, et al. Programming thermochromic liquid crystal hetero-oligomers for near-infrared reflectors: unequal incorporation of similar reactive mesogens in thiol-ene oligomers. Macromolecules. 2023;56(1):59–68. doi: 10.1021/acs.macromol.2c02041
  • Foelen Y, Schenning APHJ. Optical indicators based on structural colored polymers. Adv Sci. 2022;9(14):2200399. doi: 10.1002/advs.202200399
  • Zhan XQ, Xu FF, Zhou ZH, et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv Mater. 2021;33(37):2104418. doi: 10.1002/adma.202104418
  • Bisoyi HK, Li Q. Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures. Angew Chemie Int Ed. 2016;55(9):2994–3010. doi: 10.1002/anie.201505520
  • Mitov M, Nouvet E, Dessaud N. Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps. Eur Phys J E. 2004;15(4):413–419. doi: 10.1140/epje/i2004-10058-4
  • Bian ZY, Li KX, Huang W, et al. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution. Appl Phys Lett. 2007;91(20):201908. doi: 10.1063/1.2812539
  • Lee KM, Tondiglia VP, McConney ME, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics. 2014;1(10):1033–1041. doi: 10.1021/ph500259h
  • Dierking I. Polymer network–stabilized liquid crystals. Adv Mater. 2000;12(3):167–181. doi: 10.1002/(SICI)1521-4095(200002)12:3<167:AID-ADMA167>3.0.CO;2-I
  • Zhang LM, Nie QM, Jiang XF, et al. Enhanced bandwidth broadening of infrared reflector based on polymer stabilized cholesteric liquid crystals with poly (N-vinylcarbazole) used as alignment layer. Polymers. 2021;13(14):2238. doi: 10.3390/polym13142238
  • Lu HB, Wei C, Zhang Q, et al. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Res. 2019;7(2):137–143. doi: 10.1364/prj.7.000137
  • Broer DJ, Mol GN, Haaren JAMM, et al. Photo‐induced diffusion in polymerizing chiral‐nematic media. Adv Mater. 1999;11(7):573–578. doi: 10.1002/(SICI)1521-4095(199905)11:7<573:AID-ADMA573>3.0.CO;2-E
  • Zhang LP, Wang M, Wang L, et al. Polymeric infrared reflective thin films with ultra-broad bandwidth. Liq Cryst. 2016;43(6):750–757. doi: 10.1080/02678292.2016.1142013
  • Zhou HM, Wang H, He WL, et al. Research progress of cholesteric liquid crystals with broadband reflection. Molecules. 2022;27(14):4427. doi: 10.3390/molecules27144427
  • Zhao YZ, Li CN, Lang TT, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via spin-coating MoO2 nanoparticles. New J Chem. 2022;46(48):23361–23368. doi: 10.1039/d2nj05001c
  • Zhang WS, Liang X, Li CY, et al. Optical and thermal properties of Fe3O4 nanoparticle-doped cholesteric liquid crystals. Liq Cryst. 2018;45(8):1111–1117. doi: 10.1080/02678292.2017.1411538
  • Yang BL, Han Q, Han LK, et al. Porous covalent organic polymer coordinated single Co site nanofibers for efficient oxygen‐reduction cathodes in polymer electrolyte fuel cells. Adv Mater. 2023;35(1):2208661. doi: 10.1002/adma.202208661
  • John JV, Sharma NS, Tang GS, et al. Nanofiber aerogels with precision macrochannels and LL‐37‐mimic peptides synergistically promote diabetic wound healing. Adv Funct Mater. 2023;33(1):2206936. doi: 10.1002/adfm.202206936
  • Lu XL, Yang TT, Fu CQ, et al. Hierarchically Porous fiber‐based nanofluidic diode as an efficient multimode hygroelectric generator. Adv Energy Mater. 2022;12(47):2202634. doi: 10.1002/aenm.202202634
  • Lei H, Ma L, Wan QX, et al. Porous carbon nanofibers confined NiFe alloy nanoparticles as efficient bifunctional electrocatalysts for Zn-air batteries. Nano Energy. 2022;104:107941. doi: 10.1016/j.nanoen.2022.107941
  • Jia J, Peng Y, Zha XJ, et al. Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for boosted strain sensing performance. ACS Nano. 2022;16(10):16806–16815. doi: 10.1021/acsnano.2c06482
  • Hu YL, Qi HN, Ma QL, et al. Conjugated electrospinning toward a dual conductive network janus-shaped microfiber array film with enhanced green luminescence and high aeolotropic conduction. Mater Chem Front. 2022;6(24):3716–3730. doi: 10.1039/d2qm00837h
  • Ju JG, Huang YT, Liu MY, et al. Construction of electrospinning janus nanofiber membranes for efficient solar-driven membrane distillation. Sep Purif Technol. 2023;305:122348. doi:10.1016/j.seppur.2022.122348
  • Cui WY, Fan TT, Li YN, et al. Robust functional janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation. J Membr Sci. 2022;663:121018. doi:10.1016/j.memsci.2022.121018
  • Jia MM, Miao ZC, Wang D. Principles of preparing broad-wave reflective films supported by nanofiber networks. Liq Cryst. 2022;49(11):1448–1458. doi: 10.1080/02678292.2022.2041744
  • Miao ZC, Jia MM, Gao JJ, et al. Broad-wave reflection mechanism of polymer-stabilised cholesteric phase liquid crystals doped with natural polymeric nanofibers. Liq Cryst. 2023;50(3):403–413. doi: 10.1080/02678292.2022.2134596
  • Cao Y, Wang HJ, Cao C, et al. Synthesis and anti-ultraviolet properties of monodisperse BSA-conjugated zinc oxide nanoparticles. Mater Lett. 2011;65(2):340–342. doi: 10.1016/j.matlet.2010.10.044
  • Tawarayama K, Tanaka Y, Arisawa Y, et al. Light-shield border impact on the printability of extreme-ultraviolet mask. Jmicro-Nanolith Mem. 2011;10(2):023001-023001–9. doi: 10.1117/1.3574117
  • Chen P, Sun FZ, Wang W, et al. Facile one-pot fabrication of ZnO2 particles for the efficient Fenton-like degradation of tetracycline. J Alloys Compd. 2020;834:155220. doi:10.1016/j.jallcom.2020.155220
  • Joshi MG. Dependence of initial rate on initial initiator concentration in photoinitiated polymerizations. J Appl Polym Sci. 1981;26(11):3945–3946. doi: 10.1002/app.1981.070261140
  • Doornkamp AT, van Ekenstein GORA, Tan YY. Kinetic study of the photoinitiated polymerization of a liquid crystalline diacrylate monomer by dsc in the isothermal mode. Polymer. 1992;33(13):2863–2867. doi: 10.1016/0032-3861(92)90468-c
  • Yu MN, Wang L, Nemati H, et al. Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals. J Polym Sci. 2017;55(11):835–846. doi: 10.1002/polb.24317
  • Guillard H, Sixou P. Active broadband polymer stabilized liquid crystals. Liq Cryst. 2001;28(6):933–944. doi: 10.1080/02678290010028753
  • Guillard H, Sixou P, Reboul L, et al. Electrooptical characterizations of polymer stabilized cholesteric liquid crystals. Polymer. 2001;42(24):9753–9762. doi: 10.1016/s0032-3861(01)00312-3
  • Zhang DD, Shi WT, Cao H, et al. Reflective band memory effect of cholesteric polymer networks based on washout/refilling method. Macromol Chem Phys. 2020;221(22):1900572. doi: 10.1002/macp.201900572
  • Deng XB, Zhao YZ, Gao H, et al. Thermally bandwidth-controllable reflective liquid crystal films prepared by doping nano-sized electrospun fibers. Liq Cryst. 2021;48(11):1525–1533. doi: 10.1080/02678292.2021.1883757
  • Wang FF, Li KX, Song P, et al. Photoinduced pitch gradients and the reflection behaviour of the broadband films: influence of dye concentration, light intensity, temperature and monomer concentration. Liq Cryst. 2012;39(6):707–714. doi: 10.1080/02678292.2012.673018
  • Yu P, Chen XL, Gao JJ, et al. Polymer-stabilized cholesteric liquid crystal films with broadband reflection formed by photomask polymerization. Opt Mater. 2023;136:113385. doi:10.1016/j.optmat.2022.113385
  • Chen Q, Wang D, Gao H, et al. 3D nanomaterial silica aerogel via diffusion of chiral compound driven broadband reflection in chiral nematic liquid crystals. Liq Cryst. 2019;46(6):952–962. doi: 10.1080/02678292.2018.1542747
  • Han R, Zhang XT, Li H, et al. Preparation of polymer stabilised cholesteric broadband reflection films based on ZIF-8 assisted bidirectional diffusion method. Liq Cryst. 2023;50(2):307–318. doi: 10.1080/02678292.2022.2127159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.