77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of the varying repulsive core of Gay–Berne pair potential on the structure and freezing transition in a two-dimensional system of soft ellipses

, &
Pages 2128-2143 | Received 24 Mar 2023, Accepted 25 Jun 2023, Published online: 18 Sep 2023

References

  • De Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1993.
  • Singh S. Liquid crystal fundamentals. World Scientific. 2002. doi:10.1142/4369
  • Kundu P, Mishra P, Jaiswal A, et al. Structures and phase transition in a two-dimensional system of Gay-Berne molecules. J Mol Liq. 2019;296:111769. doi: 10.1016/j.molliq.2019.111769
  • V KA, Wolff M, Knorr K, et al. Continuous paranematic-to-nematic ordering transitions of liquid crystals in tubular silica nanochannels. Phys Rev Lett. 2008;101:187801. doi: 10.1103/PhysRevLett.101.187801
  • Iannacchione GS, Crawford GP, Žumer S, et al. Randomly constrained orientational order in porous glass. Phys Rev Lett. 1993;71(16):2595. doi: 10.1103/PhysRevLett.71.2595
  • Iannacchione GS, Finotello D. Specific heat dependence on orientational order at cylindrically confined liquid crystal phase transitions. Phys Rev E. 1994;50(6):4780. doi: 10.1103/PhysRevE.50.4780
  • Bellini T, Radzihovsky L, Toner J, et al. Universality and scaling in the disordering of a smectic liquid crystal. Science. 2001;294(5544):1074. doi: 10.1126/science.1057480
  • Leheny RL, Park S, Birgeneau RJ, et al. Smectic ordering in liquid-crystal-aerosil dispersions. I. X-ray scattering. Phys Rev E. 2003;67:011708. doi: 10.1103/PhysRevE.67.011708
  • Guégan R, Morineau D, Loverdo C, et al. Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon. Phys Rev E. 2006;73(1):011707. doi: 10.1103/PhysRevE.73.011707
  • Ji Q, Lefort R, Busselez R, et al. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores. J Chem Phys. 2009;130:234501. doi: 10.1063/1.3148889
  • Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C Solid State Phys. 2002;6:1181. doi: 10.1088/0022-3719/6/7/010
  • Hogan BT, Kovalska E, Craciunb MF, et al. 2D material liquid crystals for optoelectronics and photonics. J Mater Chem C. 2017;5(43):11185–11195. doi: 10.1039/C7TC02549A
  • Harth K, Stannarius R. Topological point defects of liquid crystals in quasi-two-dimensional geometries. Front Physiol. 2020;8:112. doi: 10.3389/fphy.2020.00112
  • Stenull O, Lubensky TC. Director fluctuations in two-dimensional liquid crystal disclinations. Crystals. 2022;12(1):1. doi: 10.3390/cryst12010001
  • Fischer T, Vink RLC. Restricted orientation “liquid crystal” in two dimensions: isotropic-nematic transition or liquid-gas one(?). Eur Phys J E. 2009;85(5):56003. doi: 10.1209/0295-5075/85/56003
  • Wu KA, Karma A, Hoyt JJ, et al. Ginzburg-Landau theory of crystalline anisotropy for bcc-liquid interfaces. Phys Rev B. 2006;73:094101. doi: 10.1103/PhysRevB.73.094101
  • Wensink HH, Vink RLC. First-order phase transitions in two-dimensional off-lattice liquid crystals. J Phys Condens Matter. 2007;19(46):466109. doi: 10.1088/0953-8984/19/46/466109
  • Ilg P. Enhanced Landau–de gennes potential for nematic liquid crystals from a systematic coarse-graining procedure. Phys Rev E. 2012;85(6):061709. doi: 10.1103/PhysRevE.85.061709
  • Carbajal GB, Odriozola G. Phase diagram of two-dimensional hard ellipses. J Chem Phys. 2014;140(20):204502. doi: 10.1063/1.4878411
  • Foulaadvand ME, Yarifard M. Two dimensional system of hard ellipses: a molecular dynamics study. Phys Rev E. 2013;88:052504. doi: 10.1103/PhysRevE.88.052504
  • Luo AM, Sagis LMC, Ilg P. The Landau free energy of hard ellipses obtained from microscopic simulations. J Chem Phys. 2014;140(12):124901. doi: 10.1063/1.4868988
  • Xu WS, Li YW, Sun ZY, et al. Hard ellipses: equation of state, structure, and self-diffusion. J Chem Phys. 2013;139(2):024501. doi: 10.1063/1.4812361
  • Xu WS, Sun ZY, An LJ. Relaxation dynamics in a binary hard-ellipse liquid. Soft Matter. 2015;11(3):627. doi: 10.1039/C4SM02290D
  • Bott MC, Winterhalter F, Marechal M, et al. Isotropic-nematic transition of self-propelled rods in three dimensions. Phys Rev E. 2018;98:012601. doi: 10.1103/PhysRevE.98.012601
  • Kraikivski P, Lipowsky R, Kierfeld J. Enhanced ordering of interacting filaments by molecular motors. Phys Rev Lett. 2006;96(25):258103. doi: 10.1103/PhysRevLett.96.258103
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site–site potential. J Chem Phys. 1981;74(6):3316–3319. doi: 10.1063/1.441483
  • Mishra P, Ram J. Effect of shape anisotropy on the phase diagram of the Gay-Berne fluid. Eur Phys J E. 2005;17(3):345–351. doi: 10.1140/epje/i2005-10014-x
  • Mishra P, Ram J, Singh Y. Structure and freezing of a fluid of long elongated molecules. J Phys. 2004;16:1695. doi: 10.1088/0953-8984/16/10/002
  • Singh RC, Ram J. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic–nematic transition. Phys A. 2003;326(1–2):13. doi: 10.1016/S0378-4371(03)00283-8
  • Singh RC, Ram J, Singh Y. Structure and freezing of fluids interacting via the Gay-Berne (n-6) potentials. Phys Rev E. 2002;65:031711–031722. doi: 10.1103/PhysRevE.65.031711
  • Velasco E, Mederos L. A theory for the liquid-crystalline phase behavior of the Gay–Berne model. J Chem Phys. 1998;109(6):2361–2370. doi: 10.1063/1.476804
  • Calderón-Alcaraz A, Munguía-Valadez J, Hernández SI, et al. A bidimensional Gay-Berne calamitic fluid: structure and phase behavior in bulk and strongly confined systems. Front Phys. 2021;8:622872. doi: 10.3389/fphy.2020.622872
  • González-Martínez AD, Chávez-Rojo MA, Sambriski EJ, et al. Defect-mediated colloidal interactions in a nematic-phase discotic solvent. RSC Adv. 2019;9(57):33413. doi: 10.1039/C9RA05377H
  • Foulaadvand ME, Yarifard M. Two-dimensional system of hard ellipses: a molecular dynamics study. Phys Rev E. 2013;88:052504. doi: 10.1103/PhysRevE.88.052504
  • de las Heras D, Velasco E. Domain walls in two-dimensional nematics confined in a small circular cavity. Soft Matter. 2014;10(11):1758–1766. doi: 10.1039/c3sm52650j
  • Geigenfeind T, Rosenzweig S, Schmidt M, et al. Confinement of two-dimensional rods in slit pores and square cavities. J Chem Phys. 2015;142(17):174701. doi: 10.1063/1.4919307
  • Gârlea IC, Mulder BM. Defect structures mediate the isotropic–nematic transition in strongly confined liquid crystals. Soft Matter. 2015;11:608–614. doi: 10.1039/C4SM02087A
  • Bharti B, Deb D. Substrate induced freezing, melting and depinning transitions in two-dimensional liquid crystalline systems. Phys Chem Chem Phys. 2022;24(8):5154–5163. doi: 10.1039/D1CP04366H
  • Velasco E, Somoza AM, Mederos L. Liquid-crystal phase diagram of the Gay–Berne fluid by perturbation theory. J Chem Phys. 1995;102(20):8107–8113. doi: 10.1063/1.469222
  • Chakin PM, Lubensky TC. Principles of condensed matter physics. UK: Cambridge University Press; 1998.
  • London F. On centers of van der Waals attraction. J Phys Chem. 1942;46(2):305. doi: 10.1021/j150416a009
  • Lee CK, Hua CC, Chen SA. Parametrization of the Gay–Berne potential for conjugated oligomer with a high aspect ratio. J Chem Phys. 2010;133(6):064902. doi: 10.1063/1.3467200
  • Caillol JM, Levesque D, Weis JJ. Theoretical determination of the dielectric constant of a two dimensional dipolar fluid. Mol Phys. 1981;44(3):733–760. doi: 10.1080/00268978100102761
  • Ram J, Singh Y. Density-functional theory of the nematic phase: results for a system of hard ellipsoids of revolution. Phys Rev A. 1991;44(6):3718–3731. doi: 10.1103/PhysRevA.44.3718
  • Miguel E, Rio EM, Brown JT, et al. Effect of the attractive interactions on the phase behavior of the Gay–Berne liquid crystal model. J Chem Phys. 1996;105(10):4234–4249. doi: 10.1063/1.472292

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.