109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced liquid crystal performance through alkoxybenzoic acid doping

, , , , , & show all
Pages 350-360 | Received 05 Oct 2023, Accepted 07 Dec 2023, Published online: 07 Mar 2024

References

  • Jones JC. The fiftieth anniversary of the liquid crystal display. Liq Cryst Today. 2018;27(3):44–70. doi: 10.1080/1358314X.2018.1529129
  • Ju Y-G, Kim H-J, Ko Y-M. Microscope projection photolithography based on liquid crystal microdisplay. Eur J Phys. 2020;41(5):055301. doi: 10.1088/1361-6404/ab988f
  • Lee J-H, Cheng I-C, Hua H, et al. Introduction to flat panel displays. NewYork (NY): John Wiley & Sons; 2020.
  • Harada Y, Koyama D, Fukui M, et al. Molecular orientation in a variable-focus liquid crystal lens induced by ultrasound vibration. Sci Rep. 2020;10(1):6168. doi: 10.1038/s41598-020-62481-2
  • Shin HJ, Choi SH, Choi JY, et al. A high image quality organic light‐emitting diode display with motion blur reduction for ultrahigh resolution and premium TVs. J Soc Inf Disp. 2020;28(6):557–565. doi: 10.1002/jsid.919
  • Lv G-J, Zhao B-C, Wu F. Real-time viewpoint generation-based 3D display with high-resolution, low-crosstalk, and wide view range. Opt Eng. 2020;59(10):103104. doi: 10.1117/1.OE.59.10.103104
  • Bahadur B. Liquid crystal-applications and uses. Canada (CA): World scientific; 1990.
  • Lorenz A, Braun L, Kolosova V. Continuous optical phase modulation in a copolymer network nematic liquid crystal. ACS Photonics. 2016;3(7):1188–1193. doi: 10.1021/acsphotonics.6b00072
  • Guo H, Li Q, Xu Y, et al. Line of sight correction of high-speed liquid crystal using overdriving technology. Electronics. 2020;9(9):1477. doi: 10.3390/electronics9091477
  • Kizhakidathazhath R, Nishikawa H, Okumura Y, et al. High-performance polymer dispersed liquid crystal enabled by uniquely designed acrylate monomer. Polymers. 2020;12(8):1625. doi: 10.3390/polym12081625
  • Chen H, Hu M, Peng F, et al. Ultra-low viscosity liquid crystal materials. Opt Mater Express. 2015;5(3):655–660. doi: 10.1364/OME.5.000655
  • Li Y, Huang Y, Ooishi H, et al., editors. Fast response liquid crystals for AR and head‐up displays. SID symposium digest of technical papers. Wiley Online Library; 2020.
  • Chausov D, Kurilov A, Kucherov R, et al. Electro-optical performance of nematic liquid crystals doped with gold nanoparticles. J Phys Condens Matter. 2020;32(39):395102. doi: 10.1088/1361-648X/ab966c
  • Derbali M, Guesmi A, Hamadi NB, et al. Dielectric, electrooptic and viscoelastic properties in cybotactic nematic phase doped with ferroelectric nanoparticles. J Mol Liq. 2020;319:113768. doi: 10.1016/j.molliq.2020.113768
  • Ayeb H, Derbali M, Mouhli A, et al. Viscoelastic and dielectric properties of 5CB nematic liquid crystal doped by magnetic and nonmagnetic nanoparticles. Phys Rev E. 2020;102(5):052703. doi: 10.1103/PhysRevE.102.052703
  • Katiyar R, Agrahari K, Pathak G, et al. Silver nanoparticles dispersed in nematic liquid crystal: an impact on dielectric and electro-optical parameters. J Theo Appl Phys. 2020;14:237–243. doi: 10.1007/s40094-020-00374-5
  • Kumar P, Debnath S, Rao NV, et al. Nanodoping: a route for enhancing electro-optic performance of bent core nematic system. J Phys Condens Matter. 2018;30(9):095101. doi: 10.1088/1361-648X/aaa801
  • Shukla RK, Chaudhary A, Bubnov A, et al. Electrically switchable birefringent self-assembled nanocomposites: ferroelectric liquid crystal doped with the multiwall carbon nanotubes. Liq Cryst. 2020;47(9):1379–1389. doi: 10.1080/02678292.2020.1720328
  • Shukla RK, Chaudhary A, Bubnov A, et al. Multi-walled carbon nanotubes-ferroelectric liquid crystal nanocomposites: effect of cell thickness and dopant concentration on electro-optic and dielectric behaviour. Liq Cryst. 2018;45(11):1672–1681. doi: 10.1080/02678292.2018.1469170
  • Shukla RK, Raina K, Hamplová V, et al. Dielectric behaviour of the composite system: multiwall carbon nanotubes dispersed in ferroelectric liquid crystal. Ph Transit. 2011;84(9–10):850–857. doi: 10.1080/01411594.2011.558300
  • Selvaraj P, Subramani K, Srinivasan B, et al. Electro-optical effects of organic N-benzyl-2-methyl-4-nitroaniline dispersion in nematic liquid crystals. Sci Rep. 2020;10(1):14273. doi: 10.1038/s41598-020-71306-1
  • Shivaraja SJ, Gupta R, Kumar S, et al. Enhanced electro-optical response of nematic liquid crystal doped with functionalised silver nanoparticles in twisted nematic configuration. Liq Cryst. 2020;47(11):1678–1690. doi: 10.1080/02678292.2020.1755901
  • Huang CY, Kumar M, Selvaraj P, et al. Fast-response liquid crystal lens with doping of organic N-benzyl-2-methyl-4-nitroaniline. Opt Express. 2020;28(7):10572–10582. doi: 10.1364/OE.390001
  • Fouzai M, Hamdi R, Ghrab S, et al. Properties of binary mixtures derived from hydrogen bonded liquid crystals. J Mol Liq. 2018;249:1279–1286. doi: 10.1016/j.molliq.2017.11.128
  • Rams-Baron M, Kramarczyk D, Knapik-Kowalczuk J, et al. Broadband-dielectric-spectroscopy study of molecular dynamics in a mixture of itraconazole and glycerol in glassy, smectic-A, and isotropic phases. Phys Rev E. 2021;104(3):034702. doi: 10.1103/PhysRevE.104.034702
  • Jirón V, Castellón E. Increased nematic–isotropic transition temperature on doping a liquid crystal with molecularly rigid carboxylic acids. J Phys Chem B. 2020;124(5):890–899. doi: 10.1021/acs.jpcb.9b09567
  • Selvaraj P, Subramani K, Hsu C-J, et al. A comparative study on electro-optic effects of organic N-benzyl-2-methyl-4-nitroaniline and morpholinium 2-chloro-4-nitrobenzoate doped in nematic liquid crystals E7. Polymers. 2020;12(12):2977. doi: 10.3390/polym12122977
  • Lin G-J, Chen T-J, Lin Y-T, et al. Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields. Opt Mater Express. 2014;4(12):2468–2477. doi: 10.1364/OME.4.002468
  • Nakata M, Takanishi Y, Watanabe J, et al. Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules. Physc Rev E. 2003;68(4):041710. doi: 10.1103/PhysRevE.68.041710
  • Zheng Z, Shen D, Huang P. Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules. New J Phys. 2010;12(11):113018. doi: 10.1088/1367-2630/12/11/113018
  • Dey KC, Mandal PK. Formulation of a binary eutectic antiferroelectric liquid crystal mixture: comparison of dielectric and electro-optic properties with the pure compounds. J Mol Liq. 2017;243:484–493. doi: 10.1016/j.molliq.2017.07.117
  • Żurowska M, Dziaduszek J, Szala M, et al. Effect of lateral fluorine substitution far from the chiral center on mesomorphic behaviour of highly titled antiferroelectric (S) and (R) enantiomers. J Mol Liq. 2018;267:504–510. doi: 10.1016/j.molliq.2017.12.114
  • Kašpar M, Bubnov A, Hamplová V, et al. Effect of lateral substitution by fluorine and bromine atoms in ferroelectric liquid crystalline materials containing a 2‐alkoxypropanoate unit. Liq Cryst. 2007;34(10):1185–1192. doi: 10.1080/02678290701527461
  • Cigl M, Bubnov A, Kašpar M, et al. Photosensitive chiral self-assembling materials: significant effects of small lateral substituents. J Mater Chem C. 2016;4(23):5326–5333. doi: 10.1039/C6TC01103A
  • Missaoui T, Amor IB, Soltani T, et al. Dielectric and electro-optic properties of cybotactic nematic phase in hydrogen-bonded liquid crystals. J Mol Liq. 2020;304:112726. doi: 10.1016/j.molliq.2020.112726
  • Jana PK, Lam J, Mangal R, et al. Impurity-induced nematic–isotropic transition of liquid crystals. Phys Chem Chem Phys. 2021;23(14):8825–8835. doi: 10.1039/D0CP06577C
  • Yang D-K, Wu S-T. Fundamentals of liquid crystal devices. NewYork (NY): John Wiley & Sons; 2014.
  • Basumatary J, Nath A, Devi TK. Temperature effects on optical parameters of liquid crystal binary mixtures exhibiting induced smectics phases. J Mol Liq. 2020;311:113251. doi: 10.1016/j.molliq.2020.113251
  • Martínez-Felipe A, Cook A, Wallage M, et al. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature Fourier transform infrared spectroscopic study. Phase Transit. 2014;87(12):1191–1210. doi: 10.1080/01411594.2014.900556
  • Uemura S. Ionic contribution to the complex dielectric constant of a polymer under dc bias. Chin J Polym Sci. 1972;10(11):2155–2166. doi: 10.1002/pol.1972.180101104
  • Agrahari K, Vimal T, Rastogi A, et al. Ferroelectric liquid crystal mixture dispersed with tin oxide nanoparticles: study of morphology, thermal, dielectric and optical properties. Mater Chem Phys. 2019;237:121851. doi: 10.1016/j.matchemphys.2019.121851
  • Shaban H, Wu P-C, Lee J-H, et al. Dielectric and electro-optical responses of a dielectrically negative nematic liquid crystal doped with cationic surfactant. Opt Mater Exp. 2021;11(9):3208–3222. doi: 10.1364/OME.437701
  • Chemingui M, Singh UB, Yadav N, et al. Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material. J Mol Liq. 2020;319:114299. doi: 10.1016/j.molliq.2020.114299
  • Lalik S, Deptuch A, Jaworska-Gołąb T, et al. Modification of AFLC physical properties by doping with BaTiO3 particles. J Phys Chem B. 2020;124(28):6055–6073. doi: 10.1021/acs.jpcb.0c02401
  • Barrera A, Binet C, Dubois F, et al. Dielectric spectroscopy analysis of liquid crystals recovered from end-of-life liquid crystal displays. Molecules. 2021;26(10):2873. doi: 10.3390/molecules26102873
  • Urbanski M, Lagerwall JP. Nanoparticles dispersed in liquid crystals: impact on conductivity, low-frequency relaxation and electro-optical performance. J Mater Chem C. 2016;4(16):3485–3491. doi: 10.1039/C6TC00659K
  • Dalir N, Javadian S, Kakemam J, et al. Evolution of electro-chemical and electro-optical properties of nematic liquid crystal doped with graphene oxide. J Mol Liq. 2018;265:398–407. doi: 10.1016/j.molliq.2018.05.138
  • Rani A, Chakraborty S, Sinha A. Effect of CdSe/ZnS quantum dots doping on the ion transport behavior in nematic liquid crystal. J Mol Liq. 2021;342:117327. doi: 10.1016/j.molliq.2021.117327
  • Meddeb B, Hbaiebb S, Guesmi A, et al. Synthesis of β-cyclodextrin functionalized silica nanoparticles and their effects on the dielectric, optical and electro-optic properties of nematic liquid crystal. Liq Cryst. 2022;49(2):182–191. doi: 10.1080/02678292.2021.1949053
  • Hsiao Y-C, Huang S-M, Yeh E-R, et al. Temperature-dependent electrical and dielectric properties of nematic liquid crystals doped with ferroelectric particles. Displays. 2016;44:61–65. doi: 10.1016/j.displa.2015.11.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.