170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low driving voltage reverse-mode polymer-stabilised cholesteric liquid crystal devices using small phenylacetylene molecule

, ORCID Icon, , , &
Pages 442-451 | Received 08 Nov 2023, Accepted 03 Jan 2024, Published online: 09 Jan 2024

References

  • Lee K, Tondiglia V, Godman N, et al. White, blue-shifting tuning of the selective reflection of polymer stabilised cholesteric liquid crystals. Soft Matter. 2017;13(35):5842–5848. doi: 10.1039/C7SM01190C
  • Li F, Lei W, Sun W, et al. Dye induced great enhancement of broadband reflection from polymer stabilised cholesteric liquid crystals. Polym Adv Technol. 2011;23(2):143–148. doi: 10.1002/pat.1834
  • Yu B, Ji S, Kim J, et al. Fabrication of a dye-doped liquid crystal light shutter by thermal curing of polymer. Opt Mater. 2017;69:164–168. doi: 10.1016/j.optmat.2017.04.029
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilised cholesteric liquid crystals. J Appl Phys. 2001;90(4):1730–1734. doi: 10.1063/1.1388172
  • Hou D, Zheng L, Sun D, et al. Polymer-stabilised blue phase liquid crystal sensor for sensitive and selective detection of organic vapors. Liq Cryst. 2022;49(2):201–208 doi: 10.1080/02678292.2021.1951381
  • Fuh A, Chih S, Wu S. Advanced electro-optical smart window based on PSLC using a photoconductive TiOPc electrode. Liq Cryst. 2021;45(6):864–871. doi: 10.1080/02678292.2017.1397214
  • Lyu J, Kikuchi H, Kim D, et al. Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilised vertical alignment liquid crystal displays. J Phys D Appl Phys. 2011;44:325104. doi: 10.1088/0022-3727/44/32/325104
  • Lu H, Jun Z, Song Z, et al. Submillisecond-response light shutter for solid-state volumetric 3D display based on polymer-stabilised cholesteric texture. J Display Technol. 2014;10(5):396–401. doi: 10.1109/JDT.2014.2301846
  • Fujikake H, Sato H, Murashige T. Polymer-stabilised ferroelectric liquid crystal for flexible displays. Displays. 2014;25(1):3–8. doi: 10.1016/j.displa.2004.04.001
  • Doane J, Golemme A, West J, et al. Polymer dispersed liquid crystals for display application. J Funct Polym. 1988;165(1):511–532. doi: 10.1080/00268948808082211
  • Büyüktanir E, Mitrokhin M, Holter B, et al. Flexible bistable smectic-a polymer dispersed liquid crystal display. Jpn J Appl Phys. 2006;45(5R):4146–4151. doi: 10.1143/JJAP.45.4146
  • Hemaid A, Ghosh A, Sundaram S, et al. Simulation study for a switchable adaptive polymer dispersed liquid crystal smart window for two climate zones (Riyadh and London). Energy Build. 2021;251:111381. doi: 10.1016/j.enbuild.2021.111381
  • Sun H, Xie Z, Chun J, et al. Dye-doped electrically smart windows based on polymer-stabilised liquid crystal. Polymers. 2019;11(4):694–703. doi: 10.3390/polym11040694
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol–acrylate chemistry. Angew Chem Int Ed. 2019;58(20):6698–6702. doi: 10.1002/anie.201902681
  • Ren H, Wu S. Reflective reversed-mode polymer stabilised cholesteric texture light switches. J Appl Phys. 2002;92(2):797–800. doi: 10.1063/1.1487441
  • Dierking I. Polymer network-stabilised liquid crystals. Adv Mater. 2000;12:167–181. doi: 10.1002/(SICI)1521-4095(200002)12:3<167:AID-ADMA167>3.0.CO;2-I
  • Zhang D, Hui C, Duan M, et al. Effect of monomer composition on the performance of polymer-stabilised liquid crystals with two-step photopolymerization. J Polym Sci Part B. 2019;57(17):1126–1132. doi: 10.1002/polb.24867
  • Fung Y, Yang D, Ying S, et al. Polymer networks formed in liquid crystals. Liq Cryst. 1995;19(6):797–801. doi: 10.1080/02678299508031102
  • Hu X, Zhang X, Yang W, et al. Stable and scalable smart window based on polymer stabilised liquid crystals. J Appl Polym Sci. 2019;137(30):48917. doi: 10.1002/app.48917
  • Furue H, Hasegawa A, Shukuoka M, et al. Control of characteristics in polymer-stabilised ferroelectric liquid crystals by using binary mixture system of monomers. J Photopol Sci Technol. 2015;28(3):325–328. doi: 10.2494/photopolymer.28.325
  • Hsu C, Gu Z, Wu C, et al. Morphology, electro-optical and dielectric properties of polymer network liquid crystals in visible wavelengths. Liq Cryst. 2019;46(4):560–569. doi: 10.1080/02678292.2018.1512667
  • Jeon B, Choi T, Do S, et al. Effects of curing temperature on switching between transparent and translucent states in a polymer-stabilised liquid-crystal cell. IEEE T Electron Dev. 2018;65(10):4387–4393. doi: 10.1109/TED.2018.2864161
  • Cui Y, Ke Y, Liu C, et al. Thermochromic VO2 for energy-efficient smart windows. Joule. 2018;2(9):1707–1746. doi: 10.1016/j.joule.2018.06.018
  • Ahmad F, Jamil M, Lee J, et al. Surfactant-doped reverse-mode polymer-dispersed liquid crystal display with enhanced properties. Liq Cryst. 2015;43(2):162–167. doi: 10.1080/02678292.2015.1090026
  • Cheng W, Lai J, Jie S, et al. Scattering-absorption-mode light shutters based on dye-doped fingerprint chiral textures. Dyes Pigments. 2019;163:78–85. doi: 10.1016/j.dyepig.2018.11.033
  • Wu P, Wu G, Timofeev I, et al. Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure. Photonics Res. 2018;6(12):1094–1100. doi: 10.1364/PRJ.6.001094
  • Khandelwal H, Heeswijk E, Schenning A, et al. Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. J Mater Chem C. 2019;7(24):7395–7398. doi: 10.1039/C9TC02011J
  • Jiang B, Liu L, Gao Z, et al. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv Opt Mater. 2018;6(13):1800195. doi: 10.1002/adom.201800195
  • Lin G, Chandrasekaran P, Lv C, et al. Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport. ACS Appl Mater Interface. 2017;9(31):26510–26517. doi: 10.1021/acsami.7b05056
  • Ke Y, Chen J, Lin G, et al. Smart windows: electro thermo mechano photochromics, and beyond. Adv Energy Mater. 2019;9(39):1902066. doi: 10.1002/aenm.201902066
  • Dierking I, Kosbar L, Lowe A, et al. Polymer network structure and electro-optic performance of polymer stabilised cholesteric textures I. The influence of curing temperature. Liq Cryst. 1998;24(3):387–395. doi: 10.1080/026782998207208
  • Dierking I, Kosbar L, Lowe A, et al. Polymer network structure and electro-optic performance of polymer stabilised cholesteric textures II. The effect of UV curing conditions. Liq Cryst. 1998;24(3):397–406. doi: 10.1080/026782998207217
  • Oh C, Park E, Park H, et al. Electro-optical behavior of liquid crystals doped with low concentrations of various titanate nanoparticles. J Nanosci Nanotechnol. 2019;19(10):6393–6397. doi: 10.1166/jnn.2019.17051
  • Yan X, Yong Z, Wei L, et al. Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilised liquid crystal devices. Liq Cryst. 2020;47(8):1131–1138. doi: 10.1080/02678292.2019.1641754
  • Zhao R, Li X, Wang K, et al. Effect of the introduction of mono-functional monomer on the electro-optic properties of reverse-mode polymer stabilised cholesteric liquid crystal. Liq Cryst. 2020;48(8):1162–1174. doi: 10.1080/02678292.2020.1849835
  • Li X, Guo Y, Huai H, et al. The effect of monomer and chiral dopant content on reverse-mode polymer stabilised cholesteric liquid crystal display. J Mol Liq. 2020;309:113112. doi: 10.1016/j.molliq.2020.113112
  • Zhang M, Li X, Long Z, et al. Effect of different monomers on the electro-optical properties of reverse-mode polymer stabilised liquid crystal. J Mol Liq. 2022;363:119895. doi: 10.1016/j.molliq.2022.119895
  • Yang Z, Wang C, Wei Z, et al. Polymer stabilised liquid crystal smart window with flexible substrates based on low-temperature treatment of polyamide acid technology. Polymers. 2022;11(11):1869. doi: 10.3390/polym11111869
  • Yun C, Saeed M, Kim D, et al. Reverse mode polymer-stabilised liquid crystal films via thiol and acrylic azobenzene. ACS Appl Polym Mater. 2023;5:3919–3927. doi: 10.1021/acsapm.3c00068
  • Yin S, Ge S, Li X, et al. Recyclable cholesteric phase liquid crystal device for detecting storage temperature failure. ACS Appl Mater Interfaces. 2023;15(29):35302–35310. doi: 10.1021/acsami.3c07287

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.