83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of cholesteric helical ordering on the dynamics of liquid crystal microdroplet coalescence

, &
Pages 471-477 | Received 20 Nov 2023, Accepted 03 Jan 2024, Published online: 16 Jan 2024

References

  • Loudet JC, Poulin P. Liquid crystal emulsions. J Dispers Sci Technol. 2002;23(1–3):143–154. doi: 10.1080/01932690208984195
  • Lopez-Leon T, Fernandez-Nieves A. Drops and shells of liquid crystals. Colloid Polym Sci. 2011;289:345. doi: 10.1007/s00396-010-2367-7
  • Jang JH, Park SY. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics. Sens Actuators B. 2017;241:636–643. doi: 10.1016/j.snb.2016.10.118
  • Dubtsov AV, Pasechnik SV, Shmeliova DV, et al. Liquid crystalline droplets in aqueous environments: electrostatic effects. Soft Matter. 2018;14:9619–9630. doi: 10.1039/C8SM01529E
  • Kitzerow HS, Crooker PP. Polymer-dispersed cholesteric liquid crystals - challenge for research and application. Ferroelectrics. 1991;122(1):183–196. doi: 10.1080/00150199108226040
  • Zharkova GM, Sonin AS. Liquid crystal composites. Novosibirsk: VO Nauka; 1994.
  • Coates D. Polymer-dispersed liquid crystals. J Mater Chem. 1995;5:2063–2072. doi: 10.1039/jm9950502063
  • Balenko NV, Bobrovsky A, Shibaev VP. Mechano-optical response of novel polymer composites based on elastic polyurethane matrix filled with low-molar-mass cholesteric droplets. Macromol Mater Eng. 2021;306(10):2100262. doi: 10.1002/mame.202100262
  • Balenko N, Shibaev V, Bobrovsky A. Mechanosensitive polymer-dispersed cholesteric liquid crystal composites based on various polymer matrices. Polymer. 2023;281:126119. doi: 10.1016/j.polymer.2023.126119
  • Cupelli D, Fiore Pasquale Nicoletta FP, Manfredi S, et al. Self-adjusting smart windows based on polymer-dispersed liquid crystals. Sol Energy Mater Sol Cells. 2009;93(11):2008–2012. doi: 10.1016/j.solmat.2009.08.002
  • Jinqian L, Zhao Y, Gao H, et al. Polymer dispersed liquid crystals doped with CeO2 nanoparticles for the smart window. Liq Cryst. 2022;49(1):29–38. doi: 10.1080/02678292.2021.1942573
  • Lee HG, Munir S, Park SY. Cholesteric liquid crystal droplets for biosensors. ACS Appl Mater Interfaces. 2016;8(39):26407–26417. doi: 10.1021/acsami.6b09624
  • Schenning APHJ, Crawford GP, Broer DJ, editors. Liquid crystal sensors. Boca Raton: Taylor & Francis Group; 2018.
  • Aery S, Parry A, Araiza-Calahorra A, et al. Ultra-stable liquid crystal droplets coated by sustainable plant-based materials for optical sensing of chemical and biological analytes. J Mater Chem B. 2023;11:5831. doi: 10.1039/D3TC00598D
  • Bono S, Konishi S. Rotation and transportation of liquid crystal droplets for visualizing electric properties of microstructured electrodes. Sci Rep. 2023;13:4369. doi: 10.1038/s41598-023-31026-8
  • Oswald P, Poy G. Droplet relaxation in Hele-Shaw geometry: application to the measurement of the nematic-isotropic surface tension. Phys Rev E. 2015;92(6):062512. doi: 10.1103/PhysRevE.92.062512
  • Klopp C, Eremin A. On droplet coalescence in quasi-two-dimensional fluids. Langmuir. 2020;36(35):10615–10621. doi: 10.1021/acs.langmuir.0c02139
  • Klopp C, Trittel T, Stannarius R. Self similarity of liquid droplet coalescence in a quasi-2D free-standing liquid-crystal film. Soft Matter. 2020;16(19):4607–4614. doi: 10.1039/D0SM00457J
  • Dolganov PV, Zverev AS, Baklanova KD, et al. Dynamics of capillary coalescence and breakup: quasi-two-dimensional nematic and isotropic droplets. Phys Rev E. 2021;104(1):014702. doi: 10.1103/PhysRevE.104.014702
  • Dolganov PV, Zverev AS, Spiridenko NA, et al. Nucleation and coalescence of isotropic droplets in a liquid-crystal matrix. The role of surfaces. J Surf Investig. 2022;16:586–591. doi: 10.1134/S1027451022040243
  • Seifert U. Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur Phys J B. 1999;8(3):405–415. doi: 10.1007/s100510050706
  • Dimova R, Riske KA, Aranda S, et al. Giant vesicles in electric fields. Soft Matter. 2007;3(7):817–827. doi: 10.1039/b703580b
  • Riske KA, Dimova R. Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J. 2005;88(2):1143–1155. doi: 10.1529/biophysj.104.050310
  • Shvetsova SA, Gruzdenko AA, Emelyanenko AV, et al. Photoinduced orientational structure transformation in cholesteric microdroplets. Bull Lebedev Phys Inst. 2019;46:201–205. doi: 10.3103/S1068335619060046
  • Bobrovsky A, Boiko NI, Shibaev VP. New chiral-photochromic dopant with variable helical twisting power and its use in photosensitive cholesteric materials. Mol Cryst Liq Cryst. 2001;363:35–50. doi: 10.1080/10587250108025256
  • Kleman M, Lavrentovich O. Soft matter physics: an introduction. New York: Springer; 2003.
  • Poy G, Bunel F, Oswald P. Role of anchoring energy on the texture of cholesteric droplets: finite-element simulations and experiments. Phys Rev E. 2017;96(1):012705. doi: 10.1103/PhysRevE.96.012705
  • Gardymova AP. Orientation structures of the chiral nematic droplets in a polymer matrix. Liq Cryst Appl. 2015;15(1):73–80.
  • Krakhalev MN, Gardymova AP, Emel’yanenko AV, et al. Untwisting of the helical structure of cholesteric droplets with homeotropic surface anchoring. JETP Lett. 2017;105(1):43–46. doi: 10.1134/S002136401701012X
  • Landau LD, Lifschitz EM. Course of theoretical physics, volume 6. Fluid mechanics. Oxford: Pergamon Press; 1987.
  • Yokota M, Okumura K. Dimensional crossover in the coalescence dynamics of viscous drops confined in between two plates. PNAS. 2011;108:6395–6398. doi: 10.1073/pnas.1017112108
  • Brun PT, Nagel M, Gallaire F. Generic path for droplets relaxation in microfluidic channels. Phys Rev E. 2013;88:043009. doi: 10.1103/PhysRevE.88.043009
  • Smith GW. The nematic/isotropic interfacial energy: determination from the Frenkel relation for droplet coalescence. Mol Cryst Liq Cryst. 1984;102:65. doi: 10.1080/01406568408070512
  • Luciani A, Champagne MF, Utracki LA. Interfacial tension coefficient from the retraction of ellipsoidal drops. J Polym Sci B Polym Phys. 1997;35:1393–1403. doi: 10.1002/(SICI)1099-0488(19970715)35:9<1393:AID-POLB9>3.0.CO;2-N
  • Guido S, Villone M. Measurement of interfacial tension by drop retraction analysis. J Colloid Int Sci. 1999;209:247–250. doi: 10.1006/jcis.1998.5818
  • Yu M, Lira RB, Riske KA, et al. Ellipsoidal relaxation of deformed vesicles. Phys Rev Lett. 2015;115:128303. doi: 10.1103/PhysRevLett.115.128303
  • Oswald P, Pieranski P. Nematic and cholesteric liquid crystals. Boca Raton: Taylor and Francis; 2004.
  • Wang W, Hashimoto T. Symmetry-breaking and symmetry-recovering occurring during coalescence of nematic droplets with a bipolar structure. Liq Cryst. 1996;20:669–672. doi: 10.1080/02678299608031158

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.