160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nematic liquid crystal dispersed with two-dimensional functionalised graphene oxide (fGO): insights on improving the nematic ordering and reducing electro-optic response time

, , , ORCID Icon & ORCID Icon
Pages 543-557 | Received 03 Oct 2023, Accepted 05 Jan 2024, Published online: 18 Jan 2024

References

  • Liu QK, Yuan Y, Smalyukh II. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles. Nano Lett. 2014;14(7):4071–4077. doi: 10.1021/nl501581y
  • Muenster R, Jarasch M, Zhuang X, et al. Dye-induced enhancement of optical nonlinearity in liquids and liquid crystals. Phys Rev Lett. 1997;78(1):42–5. doi: 10.1103/PhysRevLett.78.42
  • Lee W, Wang CY, Shih YC. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl Phys Lett. 2004;85(4):513–5. doi: 10.1063/1.1771799
  • Oh BY, Jeong MC, Moon TH, et al. Transparent conductive Al-doped ZnO films for liquid crystal displays. J Appl Phys. 2006;99(12). doi: 10.1063/1.2206417
  • Singh UB, Dhar R, Dabrowski R, et al. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq Cryst. 2013;40(6):774–82. doi: 10.1080/02678292.2013.783136
  • Nayek P, Li GQ. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Sci Rep-UK. 2015;5(1). doi: 10.1038/srep10845
  • Varshney D, Prakash AJ, Singh VP, et al. Probing the impact of bismuth-titanate based nanocomposite on the dielectric and electro-optical features of a nematic liquid crystal material. J Mol Liq. 2022;347:118389. doi: 10.1016/j.molliq.2021.118389
  • He ZM, Yu P, Zhang HM, et al. Silicon nanostructure-doped polymer/nematic liquid crystal composites for low voltage-driven smart windows. Nanotechnology. 2022;33(8):085205. doi: 10.1088/1361-6528/ac3a3b
  • Popov P, Mann EK, Jákli A. Thermotropic liquid crystal films for biosensors and beyond. J Mater Chem B. 2017;5(26):5061–78. doi: 10.1039/C7TB00809K
  • Qi H, Kinkead B, Hegmann T. Unprecedented dual alignment mode and freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv Funct Mater. 2008;18(2):212–21. doi: 10.1002/adfm.200701327
  • Nakata M, Takanishi Y, Watanabe J, et al. Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules. Phys Rev E. 2003;68(4). doi: 10.1103/PhysRevE.68.041710
  • Pieraccini S, Masiero S, Ferrarini A, et al. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem Soc Rev. 2011;40(1):258–71. doi: 10.1039/B924962C
  • Lev BI, Chernyshuk SB, Tomchuk PM, et al. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Phys Rev E. 2002;65(2). doi: 10.1103/PhysRevE.65.021709
  • Kumar A, Singh DP, Singh G. Recent progress and future perspectives on carbon-nanomaterial-dispersed liquid crystal composites. J Phys D Appl Phys. 2022;55(8):083002. doi: 10.1088/1361-6463/ac2ced
  • Draude AP, Dierking I. Thermotropic liquid crystals with low-dimensional carbon allotropes. Nano Express. 2021;2(1):012002. doi: 10.1088/2632-959X/abdf2d
  • Baig N. Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions. Compos Part A-Appl S. 2023;165. doi: 10.1016/j.compositesa.2022.107362
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005;438(7065):197–200. doi: 10.1038/nature04233
  • Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. P Natl Acad Sci USA. 2005;102(30):10451–10453. doi: 10.1073/pnas.0502848102
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9. doi: 10.1126/science.1102896
  • Lee C, Wei XD, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8. doi: 10.1126/science.1157996
  • Priyadarsini S, Mohanty S, Mukherjee S, et al. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem. 2018;8(2):123–137. doi: 10.1007/s40097-018-0265-6
  • Zhu YW, Murali S, Cai WW, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–24. doi: 10.1002/adma.201001068
  • Morozov SV, Novoselov KS, Katsnelson MI, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett. 2008;100(1). doi: 10.1103/PhysRevLett.100.016602
  • Al-Zangana S, Iliut M, Turner M, et al. Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv Opt Mater. 2016;4(10):1541–8. doi: 10.1002/adom.201600351
  • Basu R, Garvey A, Kinnamon D. Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal. J Appl Phys. 2015;117(7). doi: 10.1063/1.4908608
  • Kim JE, Han TH, Lee SH, et al. Graphene oxide liquid crystals. Angew Chem Int Edit. 2011;50(13):3043–7. doi: 10.1002/anie.201004692
  • Singh RK, Kumar R, Singh DP. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 2016;6(69):64993–5011. doi: 10.1039/C6RA07626B
  • Basu R, Kinnamon D, Garvey A. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal. Appl Phys Lett. 2015;106(20). doi: 10.1063/1.4921752
  • Al-Zangana S, Iliut M, Boran G, et al. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide. Sci Rep-UK. 2016;6(1): doi: 10.1038/srep31885
  • Shivanandareddy AB, Kumar M, Lakshminarayanan V, et al. Self-assembly of thiolated graphene oxide onto a gold surface and in the supramolecular order of discotic liquid crystals. RSC Adv. 2015;5(59):47692–700. doi: 10.1039/C5RA06713H
  • Sadhukhan S, Ghosh TK, Rana D, et al. Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property. Mater Res Bull. 2016;79:41–51. doi: 10.1016/j.materresbull.2016.02.039
  • Cote LJ, Kim F, Huang JX. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc. 2009;131(3):1043–1049. doi: 10.1021/ja806262m
  • Shivaraja SJ, Gupta RK, Kumar S, et al. Effect of functionalised silver nanoparticle on the elastic constants and ionic transport of a nematic liquid crystal. Liq Cryst. 2019;46(12):1868–1876. doi: 10.1080/02678292.2019.1611964
  • Mishra S, Manjuladevi V, Gupta RK, et al. Experimental evidence of continuous isotropic-nematic phase transition in CdS nanowire nanocomposites of a nematic liquid crystal. Liq Cryst. 2021;48(8):1151–61. doi: 10.1080/02678292.2020.1849833
  • Manjuladevi V, Madhusudana NV. High pressure studies on a nematogen with highly polar molecules: evidence for a nematic-nematic transition. Curr Sci India. 2003;85(7):1056–1061.
  • Gorkunov MV, Shandryuk GA, Shatalova AM, et al. Phase separation effects and the nematic-isotropic transition in polymer and low molecular weight liquid crystals doped with nanoparticles. Soft Matter. 2013;9(13):3578–3588. doi: 10.1039/c3sm27467e
  • Gorkunov MV, Osipov MA. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter. 2011;7(9):4348–56. doi: 10.1039/c0sm01398f
  • Yadav S, Malik P, Khushboo JD. Electro-optical, dielectric and optical properties of graphene oxide dispersed nematic liquid crystal composites. Liq Cryst. 2020;47(7):984–993. doi: 10.1080/02678292.2019.1695969
  • Mrukiewicz M, Kowiorski K, Perkowski P, et al. Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein J Nanotech. 2019;10:71–78. doi: 10.3762/bjnano.10.7
  • Singh PK, Dubey P, Dabrowski R, et al. Impact of dispersed graphene oxide on thermodynamical, optical, electro optical and dielectric properties of nematic liquid crystal. Liq Cryst. 2022;49(4):456–74. doi: 10.1080/02678292.2021.1975836
  • Özgan S, Eskalen H, Tapkiranli Y. Thermal and electro-optic properties of graphene oxide-doped hexylcyanobiphenyl liquid crystal. J Theor Appl Phys. 2018;12(3):169–176. doi: 10.1007/s40094-018-0307-y
  • Kim DW, Kim YH, Jeong HS, et al. Direct visualization of large-area graphene domains and boundaries by optical birefringence. Nat Nanotech. 2012;7(1):29–34. doi: 10.1038/nnano.2011.198
  • Maier W, Meier G. Eine einfache theorie der dielektrischen Eigenschaften homogen orientierter kristallinflussiger phasen des nematischen typs. Z Naturforsch Pt A. 1961;16(3):262–267. doi: 10.1515/zna-1961-0309
  • Singh PK, Dubey P, Dhar R, et al. Improvement in the electro-optical and electronic properties of the reduced graphene oxide dispersed in a liquid crystalline material 4’-octyl-4-cyano-biphenyl. Liq Cryst. 2023;50(3):476–94. doi: 10.1080/02678292.2022.2142880
  • Garbovskiy Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express. 2021;2(1):012004. doi: 10.1088/2632-959X/abe652
  • Garbovskiy Y. Impact of contaminated nanoparticles on the non-monotonous change in the concentration of mobile ions in liquid crystals. Liq Cryst. 2016;43(5):664–70. doi: 10.1080/02678292.2015.1133850
  • Kumar J, Manjuladevi V, Gupta RK, et al. Effect of octadecylamine-functionalised SWCNTs on the elastic constants and electro-optic response of a liquid crystal. Liq Cryst. 2015;42(3):361–9. doi: 10.1080/02678292.2014.988765
  • Zawadzki A, Walton HG. Measurements of the splay and bend elastic constants of 4′-butyl-4-heptyl-bicyclohexyl-4-carbononitrile, CCN47. Mol Cryst Liq Cryst. 2012;569(1):10–4. doi: 10.1080/15421406.2012.691070
  • DasGupta S, Chattopadhyay P, Roy SK. Effect of a rigid nonpolar solute on the splay, bend elastic constants, and on rotational viscosity coefficient of 4,4′-n-octyl-cyanobiphenyl -: art. no. 041703. Phys Rev E. 2001;63(4). doi: 10.1103/PhysRevE.63.041703
  • Yadav N, Panarin YP, Jiang WH, et al. Spontaneous mirror symmetry breaking and chiral segregation in the achiral ferronematic compound DIO. Phys Chem Chem Phys. 2023;25(13):9083–91. doi: 10.1039/D3CP00357D
  • Haller I. Thermodynamic and static properties of liquid crystals. Prog Solid State Chem. 1975;10:103–118. doi: 10.1016/0079-6786(75)90008-4
  • Li J, Gauza S, Wu ST. Temperature effect on liquid crystal refractive indices. J Appl Phys. 2004;96(1):19–24. doi: 10.1063/1.1757034
  • Sen S, Kali K, Roy SK, et al. Refractive-indexes and 3 dielectric studies of 3 phenylcyclohexane liquid-crystals in the nematic phase. Mol Cryst Liq Cryst. 1985;126(2–4):269–279. doi: 10.1080/00268948508084795
  • Li J, Wu ST. Self-consistency of vuks equations for liquid-crystal refractive indices. J Appl Phys. 2004;96(11):6253–8. doi: 10.1063/1.1812356
  • Vuks MF. Determination of optical anisotropy of aromatic molecules from double refraction of crystals. Opt Spectrosc-Ussr. 1966;20(4):361–&.
  • Shivaraja SJ, Mishra S, Dutta K, et al. Frequency dependence of dielectric permittivity and conductivity of functionalized carbon nanotube-nematic liquid crystal nanocomposite. J Mol Liq. 2022;349:118168. doi: 10.1016/j.molliq.2021.118168
  • Kumar J, Manjuladevi V, Gupta RK, et al. Fast response in TN liquid-crystal cells: effect of functionalised carbon nanotubes. Liq Cryst. 2016;43(4):488–96. doi: 10.1080/02678292.2015.1119320
  • Shivaraja SJ, Gupta RK, Kumar S, et al. Enhanced electro-optical response of nematic liquid crystal doped with functionalised silver nanoparticles in twisted nematic configuration. Liq Cryst. 2020;47(11):1678–1690. doi: 10.1080/02678292.2020.1755901
  • Jakeman E, Raynes EP. Electrooptic response times in liquid-crystals. Phys Lett A. 1972;39(1):69±. doi: 10.1016/0375-9601(72)90332-5
  • Blinov LM, Chigrinov VG. Electrooptic effects in liquid crystal materials. New York (NY): Springer; 1994.
  • Chen HY, Lee W, Clark NA. Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension. Appl Phys Lett. 2007;90(3). doi: 10.1063/1.2432294
  • Munna M, Anwar F, Coutu RA. Nematic liquid crystal composite materials for DC and RF switching. Technologies. 2019;7(2):32. doi: 10.3390/technologies7020032
  • De Vleeschouwer H, Bougrioua F, Pauwels M. Importance of ion transport in industrial LCD applications. Mol Cryst Liq. 2001;360(1):29–39. doi: 10.1080/10587250108025696

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.