144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the electro-optic response of polymer stabilised cholesteric liquid crystals with ionic dopants

, &
Pages 587-595 | Received 17 Nov 2023, Accepted 24 Jan 2024, Published online: 08 Feb 2024

References

  • Kress BC, Meyrueis P. Applied digital optics. West Sussex (UK): John Wiley & Sons; 2009.
  • White TJ, McConney ME, Bunning TJ. Dynamic color in stimuli-responsive cholesteric liquid crystals. J Mater Chem. 2010;20(44):9832–9847. doi: 10.1039/c0jm00843e
  • Geelhaar T, Griesar K, Reckmann B. 125 years of liquid crystals – a scientific revolution in the home. Angew Chem Int Ed. 2013;52:8789–8809. doi: 10.1002/anie.201301457
  • Goodby JW. Chirality in liquid crystals. J Mater Chem. 1991;1(3):307–318. doi: 10.1039/jm9910100307
  • Kitzerow HS, Bahr C, editors. Chirality in liquid crystals. New York (NY): Springer; 2001.
  • Dierking I. Chiral liquid crystals: structures, phases, effects. Symmetry. 2014;6(2):444–472. doi: 10.3390/sym6020444
  • Nityanada R. On the theory of light propagation in cholesteric liquid crystals. Mol Cryst Liq Cryst. 1973;21(3–4):315–331. doi: 10.1080/15421407308083326
  • Dreher R, Meier G, Saupe A. Selective reflection by cholesteric liquid crystals. Mol Cryst Liq Cryst. 1971;13(1):17–26. doi: 10.1080/15421407108083534
  • Berreman DW, Scheffer TJ. Bragg reflection of light from single-domain cholesteric liquid-crystal films. Phys Rev Lett. 1970;25(9):581. doi: 10.1103/PhysRevLett.25.577
  • Coates D. Development and applications of cholesteric liquid crystals. Liq Cryst. 2015;42(5):653–665.
  • Gottarelli G, Spada GP. Induced cholesteric mesophases: origin and application. Mole Cryst Liq Cryst. 1985;123(1):377–388. doi: 10.1080/00268948508074792
  • Gray GW, McDonnell DG. The relationship between helical twist sense, absolute configuration and molecular structure for non-sterol cholesteric liquid crystals. Mol Cryst Liq Cryst. 1977;34(9):211–217. doi: 10.1080/15421407708083708
  • Kuball HG. From chiral molecules to chiral phases: comments on the chirality of liquid crystalline phases. Liq Cryst Today. 1999;9(1):1–7. doi: 10.1080/135831499308150
  • Taugerbeck A, Booth CJ. Design and synthesis of chiral nematic liquid crystals. In: Goodby J, Collings P, Kato T, et al., editors. Handbook of liquid crystals. 2nd ed. Weinheim (DE): Wiley-VCH; 2014. p. 9–12.
  • Kuball HG, Brüning H. Helical twisting power and circular dichroism as chirality observations: the intramolecular and intermolecular chirality transfer. Chirality. 1997;9:407–423. doi: 10.1002/(SICI)1520-636X(1997)9:5/6<407:AID-CHIR3>3.0.CO;2-2
  • Priestley EB. Introduction to the optical properties of cholesteric and chiral nematic liquid crystals. In: Priestley E, Wojtowicz P, Sheng P, editors. Introduction to liquid crystals. Boston (MA): Springer US; 1975. p. 203–218.
  • Yang DK, Mi XD. Modelling of the reflection of cholesteric liquid crystals using the Jones matrix. J Phys D Appl Phys. 2000;33(6):672–676. doi: 10.1088/0022-3727/33/6/313
  • Berreman DW. Optics in stratified and anisotropic media: 4×4-matrix formulation. J Opt Soc Am. 1972;62(4):502–510. doi: 10.1364/JOSA.62.000502
  • Berreman DW, Scheffer TJ. Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification. Mol Cryst Liq Cryst. 1970;11(4):395–405. doi: 10.1080/15421407008083530
  • Lee KM, Marsh ZM, Crenshaw EP, et al. Recent advances in electro-optic response of polymer-stabilized cholesteric liquid crystals. Materials. 2023;16(6):2248. doi: 10.3390/ma16062248
  • Yang DK, Chien LC, Doane JW. Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters. Appl Phys Lett. 1992;60(25):3102–3104. doi: 10.1063/1.106765
  • Yang DK, West JL, Chien LC, et al. Control of reflectivity and bistability in displays using cholesteric liquid crystals. J Appl Phys. 1994;76(2):1331–1333. doi: 10.1063/1.358518
  • Radka BP, Lee KM, Godman NP, et al. Electro-optic characteristics of stabilized cholesteric liquid crystals with non-liquid crystalline polymer networks. Soft Matter. 2022;18(15):3013. doi: 10.1039/D2SM00203E
  • Radka BP, Pande GK, White TJ. The contribution of network elasticity to electro-optic response in polymer stabilized cholesteric liquid crystals. Soft Matter. 2023;19(25):4634–4641. doi: 10.1039/D3SM00225J
  • Dierking I. Polymer network-stabilized liquid crystals. Adv Mater. 2000;12(3):167–181. doi: 10.1002/(SICI)1521-4095(200002)12:3<167:AID-ADMA167>3.0.CO;2-I
  • Dierking I, editor. Polymer modified liquid crystals. London (UK): Royal Society of Chemistry; 2019.
  • Dierking I, Kosbar LL, Lowe AC, et al. Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature. Liq Cryst. 1998;24(3):387–395. doi: 10.1080/026782998207208
  • Dierking I, Kosbar LL, Lowe AC, et al. Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions. Liq Cryst. 1998;24(3):397–406. doi: 10.1080/026782998207217
  • Garbovskiy Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express. 2021;2(1):012004. doi: 10.1088/2632-959X/abe652
  • Garbovskiy Y. Time-dependent electrical properties of liquid crystal cells: unravelling the origin of ion generation. Liq Cryst. 2018;45(3):1540–1548. doi: 10.1080/02678292.2018.1455228
  • Naito H, Yoshida K, Okuda M, et al. Transient current study of ultraviolet-light-soaked states in n-pentyl-p-n-cyanobiphenyl. Jpn J Appl Phys. 1994;33(10):589–581. doi: 10.1143/JJAP.33.5890
  • Yasuda Y, Naito H, Okuda M, et al. Observation of adsorption and desorption processes of impurity ions in nematic liquid crystal cells. Mol Cryts Liq Cryst. 1995;263(1):559–565. doi: 10.1080/10587259508033616
  • Naito H, Yasuda Y, Sugimura A. Desorption processes of adsorbed impurity ions on alignment layers in nematic liquid crystal cells. Mol Cryst Liq Cryst. 2006;301(1):85–90. doi: 10.1080/10587259708041752
  • Kravchuk R, Koval’chuk O, Yaroshchuk O. Filling initiated ion transport processes in liquid crystal cell. Mol Cryst Liq Cryst. 2010;384(1):111–119. doi: 10.1080/713738781
  • Garbovskiy Y. Nanoparticle-enabled ion trapping and ion generation in liquid crystals. Adv Condens Matter Phys. 2018;2018:1–8. doi: 10.1155/2018/8914891
  • Son JH, Park SB, Zin WC, et al. Ionic impurity control by a photopolymerisation process of reactive mesogen. Liq Cryst. 2013;40(4):458–467. doi: 10.1080/02678292.2012.757372
  • Lee KM, Bunning TJ, White TJ, et al. Effect of ion concentration on the electro-optic response in polymer-stabilized cholesteric liquid crystals. Crystals. 2021;11(1):7. doi: 10.3390/cryst11010007
  • Nemati H, Liu S, Zola RS, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter. 2015;11(6):1208–1213. doi: 10.1039/C4SM02283A
  • Tondiglia VP, Natarajan LV, Bailey CA, et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt Mater Express. 2014;4(7):1465–1472. doi: 10.1364/OME.4.001465
  • Lee KM, Tondiglia VP, Godman NP, et al. Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals. Soft Matter. 2017;13(35):5842–5848. doi: 10.1039/C7SM01190C
  • Lee KM, Tondiglia VP, White TJ. Electrically reconfigurable liquid crystalline mirrors. ACS Omega. 2018;3(4):4453–4457. doi: 10.1021/acsomega.8b00453
  • Worth B, Lee KM, Tondiglia VP, et al. Dynamic, infrared bandpass filters prepared from polymer-stabilized cholesteric liquid crystals. Appl Opt. 2016;55(25):7134–7137. doi: 10.1364/AO.55.007134
  • Mcconney ME, Tondiglia VP, Natarajan LV, et al. Electrically induced color changes in polymer-stabilized cholesteric liquid crystals. Adv Opt Mater. 2013;1(6):417–421. doi: 10.1002/adom.201300111
  • Tondiglia VT, Natarajan LV, Bailey CA, et al. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J Appl Phys. 2011;110(5):053109. doi: 10.1063/1.3632068
  • Lee KM, Tondiglia VP, McConney ME, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics. 2014;1(10):1033–1041. doi: 10.1021/ph500259h
  • Radka BP, King BE, McConney ME, et al. Electrically induced splitting of the selective reflection in polymer stabilized cholesteric liquid crystals. Adv Opt Mater. 2020;8(19):2000914. doi: 10.1002/adom.202000914
  • Pande GK, Radka BP, McCracken JM, et al. Molecular engineering of the polymer stabilizing network to enhance the electro-optic response of cholesteric liquid crystals. J Mater Chem C. 2023;11(46):16377–16383. doi: 10.1039/D3TC03230B
  • Colpaert C, Maximus B, De Meyere A. Adequate measuring techniques for ions in liquid crystal layers. Liq Cryst. 1996;21(1):133–142. doi: 10.1080/02678299608033803
  • Kim HJ, Chen B, Suo Z, et al. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science. 2020;367(6479):773–776. doi: 10.1126/science.aay8467
  • Rawlings D, Thomas EM, Segalman RA, et al. Controlling the doping mechanism in Poly(3-hexylthiophene) thin-film transistors with polymeric ionic liquid dielectrics. Chem Of Mater. 2019;31(21):8820–8829. doi: 10.1021/acs.chemmater.9b02803
  • Lee KM, Tondiglia VP, Lee T, et al. Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals. J Mater Chem C. 2015;3(34):8788–8793. doi: 10.1039/C5TC01320H
  • Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 1st ed. New York (NY): John Wiley & Sons; 1980.
  • Shimomura T, Takamuku T, Yamaguchi T. Clusters of imidazolium-based ionic liquid in benzene solutions. J Phys Chem B. 2011;115(26):8518–8527. doi: 10.1021/jp203422z
  • Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev. 2013;113(3):2100–2138. doi: 10.1021/cr300222d
  • Yamada S, Kawamura C. [4 + 4] photodimerization of azaanthracenes in both solution and solid phase controlled by cation-π interactions. Org Lett. 2012;14(6):1572–1575. doi: 10.1021/ol3003089
  • Salonen LM, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed. 2011;50(21):4808–4842. doi: 10.1002/anie.201007560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.