78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mesomorphic behaviour and photoluminescence study of novel homologous series of Schiff’s base derived from cholesteryl carbonate and thiadiazole moiety

, & ORCID Icon
Pages 656-669 | Received 14 Dec 2023, Accepted 13 Feb 2024, Published online: 23 Feb 2024

References

  • Crockett EL. Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to Temperature1. Am Zool. 1998;38(2):291–304. doi: 10.1093/icb/38.2.291
  • Shinkai S, Murata K. Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers. J Mater Chem. 1998;8(3):485–495. doi: 10.1039/a704820c
  • Yelamaggad CV, Shanker G, Hiremath US, et al. Cholesterol-based nonsymmetric liquid crystal dimers: an overview. J Mater Chem. 2008;18(25):2927–2949. doi: 10.1039/b804579h
  • Yelamaggad CV, Nagamani SA, Hiremath US, et al. Cholesterol-based dimeric liquid crystals: synthesis and mesomorphic behaviour. Liq Cryst. 2001;28(7):1009–1015. doi: 10.1080/02678290110039499
  • Galatina AI, Novikova NS, Derkach LG, et al. Structure and mesomorphism of cholesteric liquid crystals. Mol Cryst Liq Cryst. 1986;140(1):11–81. doi: 10.1080/00268948608080142
  • Harwood SM, Toyne KJ, Goodby JW, et al. The synthesis of cholest-5-ene-3beta-carboxylates and a comparison of their mesomorphic behaviour with isomeric cholesterol esters with a reversed ester linkage. Liq Cryst. 2000;27(4):443–449. doi: 10.1080/026782900202624
  • Shubashree S, Sadashiva BK. Twist grain boundary smectic a phase in compounds derived from cholesterol. Curr Sci. 2003;85:1061–1065.
  • Shubashree S, Sadashiva BK. Synthesis and mesomorphic properties of compounds exhibiting the undulated twist grain boundary smectic C* phase. Liq Cryst. 2004;31(1):81–89. doi: 10.1080/02678290410001643953
  • Chen R, Wang L, An Z, et al. Effect of π-conjugation units on the liquid crystal and photovoltaic performance of heterocyclic pyridine-based compounds. Liq Cryst. 2021;48(15):2178–2187. doi: 10.1080/02678292.2021.1934743
  • Zhang H, Shiino S, Shishido A, et al. A thiophene liquid crystal as a novel π-conjugated dye for photo-manipulation of molecular alignment. Adv Mater. 2000;12(18):1336–1339. doi: 10.1002/1521-4095(200009)12:18<1336:AID-ADMA1336>3.0.CO;2-A
  • Hutchison GR, Ratner MA, Marks TJ. Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J Am Chem Soc. 2005;127(48):16866–16881. doi: 10.1021/ja0533996
  • Park YS, Kim D, Lee H, et al. Donor-acceptor-donor-type liquid crystal with a pyridazine core. Org Lett. 2006;8:4699–4702. doi: 10.1021/ol061711q
  • O’Neill M, Kelly SM. Liquid crystals for charge transport, luminescence, and photonics. Adv Mater. 2003;15:1135–1146. doi: 10.1002/adma.200300009
  • Seed AJ, Hird M, Styring P, et al. Heterocyclic esters exhibiting frustrated liquid crystal phases. Mol Cryst Liq Cryst. 1997;299(1):19–25. doi: 10.1080/10587259708041968
  • Barbarella G, Zambianchi M, Pudova O, et al. Oligothiophene isothiocyanates as a new class of fluorescent markers for biopolymers. J Am Chem Soc. 2001;123(47):11600–11607. doi: 10.1021/ja011209v
  • Su S-J, Cai C, Kido J. RGB phosphorescent organic light-emitting diodes by using host materials with heterocyclic cores: effect of nitrogen atom orientations. Chem Mater. 2011;23(2):274–284. doi: 10.1021/cm102975d
  • Feng Z, Cheng Z, Jin H, et al. Recent progress of sulphur-containing high-efficiency organic light-emitting diodes (OLEDs). J Mater Chem C. 2022;10(12):4497–4520. doi: 10.1039/D1TC05255A
  • Parra ML, Elgueta EY, Ulloa JA, et al. Columnar liquid crystals based on amino-1,3,4-thiadiazole derivatives. Liq Cryst. 2012;39(8):917–925. doi: 10.1080/02678292.2012.686635
  • Han J, Wang J, Zhang F, et al. Synthesis and mesomorphic behaviour of heterocycle‐based liquid crystals containing 1,3,4‐oxadiazole/thiadiazole and thiophene units. Liq Cryst. 2008;35:1205–1214. doi: 10.1080/02678290802444129
  • Seltmann J, Marini A, Mennucci B, et al. Nonsymmetric bent-core liquid crystals based on a 1,3,4-thiadiazole core unit and their nematic mesomorphism. Chem Mater. 2011;23(10):2630–2636. doi: 10.1021/cm200643u
  • Tuzimoto P, Santos DMPO, Moreira TDS, et al. Luminescent liquid crystals containing a sulphur-based heterocyclic core. Liq Cryst. 2014;41:1097–1108. doi: 10.1080/02678292.2014.903003
  • Tomi IHR, Al-Heetimi DTA, Jaffer HJ. Asymmetric 1,3,4-thiadiazole derivatives: synthesis, characterization and studying their liquid crystalline properties. J Mol Struct. 2017;1141:176–185. doi: 10.1016/j.molstruc.2017.03.105
  • Dimitrowa K, Hauschild J, Zaschke H, et al. Kristallin-flüssige 1,3,4-Thiadiazole. I. Biphenyl- und terphenylanaloge 1,3,4-Thiadiazole. J Prakt Chem. 1980;322:933–944. doi: 10.1002/prac.19803220610
  • Han J, Wang Q, Wu J, et al. Synthesis and liquid crystalline property of H-shaped 1,3,4-thiadiazole dimers. Liq Cryst. 2015;42:127–133. doi: 10.1080/02678292.2014.966792
  • Zhong W-Y, Song L-Q, Zhou B, et al. Synthesis, mesomorphic and fluorescent properties of 1,3,4-oxadiazoles/thiadiazoles with a terminal 3-fluoro-4-cyanophenyl group. Tetrahedron. 2023;144:133579. doi: 10.1016/j.tet.2023.133579
  • Saha SK, Deb J, Sarkar U, et al. Hockey-stick-shaped mesogens based on 1,3,4-thiadiazole: synthesis, mesomorphism, photophysical and DFT studies. Liq Cryst. 2017;44(14–15):2203–2221. doi: 10.1080/02678292.2017.1331269
  • Elgueta EY, Parra ML, Barberá J, et al. New polycatenar Schiff bases derived from 1,3,4-thiadiazole: synthesis, mesomorphism and luminescence behaviour. Liq Cryst. 2016;43(11):1649–1658. doi: 10.1080/02678292.2016.1193907
  • Tandel RC, Patel NK. Synthesis and mesomorphic properties of chiral nematic liquid crystals based on cholesterol. Liq Cryst. 2014;41(4):514–521. doi: 10.1080/02678292.2013.861031
  • Lee H-C, Lu Z, Henderson PA, et al. Cholesteryl-based liquid crystal dimers containing a sulfur–sulfur link in the flexible spacer. Liq Cryst. 2012;39(2):259–268. doi: 10.1080/02678292.2011.641753
  • Frizon TEA, Vieira AA, Giacomelli FC, et al. Synthesis of cholesterol containing unsymmetrical dimers: a new series of liquid crystals. Liq Cryst. 2022;49(5):758–768. doi: 10.1080/02678292.2021.2007424
  • Chan T-N, Lu Z, Yam W-S, et al. Non-symmetric liquid crystal dimers containing an isoflavone moiety. Liq Cryst. 2012;39(3):393–402. doi: 10.1080/02678292.2012.658712
  • Donaldson T, Staesche H, Lu ZB, et al. Symmetric and non-symmetric chiral liquid crystal dimers. Liq Cryst. 2010;37(8):1097–1110. doi: 10.1080/02678292.2010.494412
  • Donaldson T, Henderson PA, Achard MF, et al. Non-symmetric chiral liquid crystal trimers. Liq Cryst. 2011;38(10):1331–1339. doi: 10.1080/02678292.2011.613265
  • Donaldson T, Henderson PA, Achard MF, et al. Chiral liquid crystal tetramers. J Mater Chem. 2011;21(29):10935–10941. doi: 10.1039/c1jm10992h
  • Hamley IW, Castelletto V, Parras P, et al. Ordering on multiple lengthscales in a series of side group liquid crystal block copolymers containing a cholesteryl-based mesogen. Soft Matter. 2005;1(5):355–363. doi: 10.1039/b510512a
  • Bairwa SK, Sonera SA, Tandel RC. Cholesterol based mesogenic Schiff’s base derivatives with carbonate linkage: synthesis, characterisation and photoluminescence study. Liq Cryst. 2023. doi: 10.1080/02678292.2023.2260773
  • Jamain Z, Khairuddean M, Guan-Seng T. Synthesis of novel liquid crystalline and fire retardant molecules based on six-armed cyclotriphosphazene core containing Schiff base and amide linking units. RSC Adv. 2020;10(48):28918–28934. doi: 10.1039/D0RA03812A
  • Upadhyay PK, Mishra P. Synthesis, antimicrobial and anticancer activities of 5-(4-substituted-phenyl)-1,3,4- thiadiazole-2-amines. Rasayan J Chem. 2017;10:254–262.
  • Vasoya SL, Paghdar DJ, Chovatia PT, et al. Synthesis of some new thiosemicarbazide and 1,3,4-thiadiazole heterocycles bearing benzo[b]Thiophene nucleus as a potent antitubercular and antimicrobial agents. J Sci I R Iran. 2005;16:33–36.
  • Aouad MR, Messali M, Rezki N, et al. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents. Acta Pharm. 2015;65:117–132. doi: 10.1515/acph-2015-0011
  • Al-Malki MKS, Hameed AS, Al-Dujaili AH. Synthesis and mesomorphic properties of new columnar liquid crystal containing 1,3,5-triiminebenzene with pendant 1,3,4-thiadiazole group. Mol Cryst Liq Cryst. 2014;593:34–42. doi: 10.1080/15421406.2013.864546
  • Tandel RC, Patel NK. Synthesis and study of liquid crystalline properties of Schiff’s bases having 1,3,4-thiadiazole moiety. Liq Cryst. 2014;41(4):495–502. doi: 10.1080/02678292.2013.859754
  • Dierking I, Gieβelmann F, Zugenmaier P, et al. Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells. Liq Cryst. 1993;13:45–55. doi: 10.1080/02678299308029052
  • Shanker G, Yelamaggad CV. Synthesis and phase transitional behavior of dimer-like optically active liquid crystals. J Phys Chem B. 2011;115:10849–10859. doi: 10.1021/jp206224k
  • Zhan X, Jing X, Wu C. Synthesis and mesomorphic properties of a novel series of cholesterol-based liquid crystalline tetramers. Liq Cryst. 2009;36(12):1349–1354. doi: 10.1080/02678290903229577
  • Dierking I, Gießelmann F, Zugenmaier P. TGB A* state in a homologous series of diarylethane α-chloroester ferroelectric liquid crystals. Liq Cryst. 1994;17(1):17–22. doi: 10.1080/02678299408036546
  • Prasad SK, Nair GG, Chandrasekhar S, et al. Pressure induced twist grain boundary phase. Mol Cryst Liq Cryst. 1995;260(1):387–394. doi: 10.1080/10587259508038712
  • Dierking I. A review of textures of the TGBA* phase under different anchoring geometries. Liq Cryst. 1999;26(1):83–95. doi: 10.1080/026782999205588
  • Bhat SV, Raghunathan VA, Kumar S. Synthesis and mesomorphic characterization of some novel steroidal mesogens: a structure–property correlation. J Mol Liq. 2021;340:117219. doi: 10.1016/j.molliq.2021.117219
  • Dierking I. The SmC* subphases. Textures Liq Crys. 2003:123–134. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/3527602054.ch8.
  • Amponsah-Efah KK, Glorieux C, Thoen J, et al. Effect of glycerol on the order of the mesophase transitions of supercooled itraconazole. J Mol Liq. 2020;320:114222. doi: 10.1016/j.molliq.2020.114222
  • Tan X, Zhang R, Guo C, et al. Amphotropic azobenzene derivatives with oligooxyethylene and glycerol based polar groups. J Mater Chem C. 2015;3(42):11202–11211. doi: 10.1039/C5TC02583D
  • Omar AZ, Alazmi ML, Alsubaie MS, et al. Synthesis of new liquid-crystalline compounds based on terminal benzyloxy group: characterization, DFT and mesomorphic properties. Molecules. 2023;28(9):3804. doi: 10.3390/molecules28093804
  • Cruickshank E, Strachan GJ, Majewska MM, et al. The effects of alkylthio chains on the properties of symmetric liquid crystal dimers. New J Chem. 2023;47(15):7356–7368. doi: 10.1039/D2NJ06252F
  • Imrie CT, Taylor L. The preparation and properties of low molar mass liquid crystals possessing lateral alkyl chains. Liq Cryst. 1989;6(1):1–10. doi: 10.1080/02678298908027317
  • Date RW, Imrie CT, Luckhurst GR, et al. Smectogenic dimeric liquid crystals. The preparation and properties of the α,ω-bis(4- n -alkylanilinebenzylidine-4′-oxy)alkanes. Liq Cryst. 1992;12(2):203–238. doi: 10.1080/02678299208030393
  • Parra M, Alderete J, Zuńñiga C, et al. Azo compounds and Schiff ’s bases derived from 5-(4-pyridyl)-2-amino-1,3,4-thiadiazole: synthesis, mesomorphic properties and structural study by semi-empirical calculations. Liq Cryst. 2001;28(11):1659–1666. doi: 10.1080/02678290110071565
  • Xu Y, Li B, Liu H, et al. Liquid crystalline thiadiazole derivatives: new ferroelectric thiadiazole derivatives. Liq Cryst. 2002;29(2):199–202. doi: 10.1080/02678290110068424
  • Kumar B, Devi J, Manuja A. Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands. Res Chem Intermed. 2023;49(6):2455–2493. doi: 10.1007/s11164-023-04991-y
  • Sonker E, Tiwari R, Kumar K, et al. Electrical properties of new polyazomethines. SN Appl Sci. 2020;2(6):1123. doi: 10.1007/s42452-020-2910-1
  • Perju E, Marin L. Mesomorphic behavior of symmetric azomethine dimers containing different chromophore groups. Molecules. 2021;26(8):2183. doi: 10.3390/molecules26082183
  • Kumar A, Singh G. Recent advances and future perspectives of photoluminescent liquid crystals and their nanocomposites for emissive displays and other tunable photonic devices. J Mol Liq. 2023;386:122607. doi: 10.1016/j.molliq.2023.122607
  • Kim J-K, Joo S-H, Song J-K. Complementarity between fluorescence and reflection in photoluminescent cholesteric liquid crystal devices. Opt Express. 2013;21(5):6243–6248. doi: 10.1364/OE.21.006243
  • Goel A, Tomer N, Ghule VD, et al. A multi-responsive pyranone based Schiff base for the selective, sensitive and competent recognition of copper metal ions. Spectrochim Acta A. 2021;249:119221. doi: 10.1016/j.saa.2020.119221
  • Yamada S, Uto E, Yoshida K, et al. Development of photoluminescent liquid-crystalline dimers bearing two fluorinated tolane-based luminous mesogens. J Mol Struct. 2022;363:119884. doi: 10.1016/j.molliq.2022.119884
  • Khan M, Liu S, Qi L, et al. Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface. Trends Analyt Chem. 2021;144:116434. doi: 10.1016/j.trac.2021.116434
  • Mohammad A-T, Abbas WR. Liquid crystal behavior, photoluminescence and gas sensing: a new series of ionic liquid crystal imidazole and benzoimidazole bearing chalcone groups, synthesis and characterization. RSC Adv. 2021;11(61):38444–38456. doi: 10.1039/D1RA07731G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.