95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tunable bandpass filter based on epsilon-near-zero metamaterials using liquid crystals

, , , , &
Pages 773-782 | Received 03 Jan 2024, Accepted 27 Feb 2024, Published online: 25 Mar 2024

References

  • Lee S, Kim J-M, Kim J-M, et al. Millimeter- wave mems tunable low pass filter with reconfigurable series inductors and capacitive shunt switches. IEEE Microwave Wireless Compon Lett. 2005;15(10):691–693. doi: 10.1109/LMWC.2005.856843
  • Shin H, Kim Y. A cmos active-rc low-pass filter with simultaneously tunable high-and low-cutoff frequencies for ieee 802.22 applications. IEEE Trans Circuits Syst II Express Briefs. 2010;57(2):85–89. doi: 10.1109/TCSII.2009.2037994
  • Ni J, Hong J. Compact varactor-tuned microstrip high-pass filter with a quasi-elliptic function response. IEEE Trans Microwave Theory Tech. 2013;61(11):3853–3859. doi: 10.1109/TMTT.2013.2281964
  • Kim D, Kim B, Nam S. A transconductor and tunable g {m}−c high-pass filter linearization technique using feedforward g {m3} canceling. IEEE Trans Circuits Syst II Express Briefs. 2015;62(11):1058–1062. doi: 10.1109/TCSII.2015.2456611
  • Fan M, Song K, Fan Y. Reconfigurable bandpass filter with wide- range bandwidth and frequency control. IEEE Trans Circuits Syst II Express Briefs. 2020;68(6):1758–1762. doi: 10.1109/TCSII.2020.3040190
  • Aldrigo M, Dragoman M, Iordanescu S, et al. Tunable and miniaturized microwave filters using carbon nanotube-based variable capacitors. IEEE Trans Nanotechnol. 2022;21:118–130. doi: 10.1109/TNANO.2022.3153561
  • Brown JA, Barth S, Smyth BP, et al. Compact mechanically tunable microstrip bandstop filter with constant absolute bandwidth using an embedded metamaterial-based ebg. IEEE Trans Microwave Theory Tech. 2020;68(10):4369–4380. doi:10.1109/TMTT.2020.3016310
  • Zhao K, Psychogiou D. X-band mmic-based tunable quasi- absorptive bandstop filter. IEEE Microwave Wireless Technol Lett. 2023;33(4):391–394.
  • Dyussembayev A, Psychogiou D. Continuously tunable 3-d printed helical resonators and bandpass filters using actuated liquid metals. IEEE Microwave Wireless Compon Lett. 2022;32(7):855–858. doi: 10.1109/LMWC.2022.3152014
  • Chen R-S, Wong S-W, Lin J-Y, et al. Reconfigurable cavity bandpass filters using fluid dielectric. IEEE Trans Ind Electron. 2020;68(9):8603–8614. doi: 10.1109/TIE.2020.3009566
  • Iqbal A, Tiang JJ, Lee CK, et al. Dual- band half mode substrate integrated waveguide filter with independently tunable bands. IEEE Trans Circuits Syst II Express Briefs. 2019;67(2):285–289. doi: 10.1109/TCSII.2019.2911014
  • Chen J-X, Du M-Z, Li Y-L, et al. Independently tunable/controllable differential dual-band bandpass filters using element-loaded stepped-impedance resonators. IEEE Trans Compon Packaging Manuf Technol. 2017;8(1):113–120. doi: 10.1109/TCPMT.2017.2761789
  • Tian M, Long Z, Feng L, et al. A compact wide- range frequency and bandwidth reconfigurable filter. IEEE Microw Wireless Compon Lett. 2022;32(11):1283–1286. doi: 10.1109/LMWC.2022.3178722
  • Jones TR, Daneshmand M. Miniaturized folded ridged quarter- mode substrate integrated waveguide rf mems tunable bandpass filter. IEEE Access. 2020;8:115 837–115 847. doi: 10.1109/ACCESS.2020.3004116
  • Kagita S, Basu A, Koul SK. Electrically tunable ferrite bandpass filter in x-band with wide tunability. IEEE Trans Magn. 2019;55(7):1–4. doi: 10.1109/TMAG.2019.2897235
  • Polat E, Reese R, Jost M, et al. Tunable liquid crystal filter in nonradiative dielectric waveg- uide technology at 60 ghz. IEEE Microw Wireless Compon Lett. 2018;29(1):44–46. doi: 10.1109/LMWC.2018.2884152
  • Xu W, Zhang Y, Peng Y, et al. Tunable bandstop hmsiw filter with flexible center frequency and bandwidth using liquid crystal. IEEE Access. 2019;7:161 308–161 317. doi: 10.1109/ACCESS.2019.2951543
  • Sánchez J, Bachiller C, Nova V, et al. Reconfigurable resonator in decoupled empty siw technology using liquid crystal material. Electron Lett. 2019;55(16):907–910. doi: 10.1049/el.2019.1088
  • Liu Y, Jiang D, Cao W, Yang T, Xia L, and Xu R. Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials. Optik. 2016;127(21):10 216–10 222. doi: 10.1016/j.ijleo.2016.08.034
  • Wang P-Y, Sievert B, Svejda JT, et al. A liquid crystal tunable metamaterial unit cell for dynamic metasurface antennas. IEEE Trans Antennas Propagation. 2022;71(1):1135–1140.
  • Zhang W, Li Y, Zhang Z. A reconfigurable reflectarray antenna with an 8 µm-thick layer of liquid crystal. IEEE Trans Antennas Propag. 2021;70(4):2770–2778. doi: 10.1109/TAP.2021.3125378
  • Lio GE, Ferraro A, Zappone B, et al. Unlocking optical coupling tunability in epsilon-near-zero metamaterials through liquid crystal nanocavities. Adv Opt Mater. 2023;2302483. doi: 10.1002/adom.202302483
  • Lio GE, Ferraro A, Kowerdziej R, et al. Engineering fano-resonant hybrid metastructures with ultra- high sensing performances. Adv Opt Mater. 2023;11(12):2203123. doi: 10.1002/adom.202203123
  • Li Y, Zhou Z, He Y, et al. Epsilon-Near-Zero Metamaterials, ser. In: Cui T, Pendry JB, editors. Elements in emerging theories and technologies in metamaterials. Cambridge: Cambridge University Press; 2022. p. 38–52.
  • Zhou Z, Li Y. N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials. IEEE Trans Microwave Theory Tech. 2021;69(3):1529–1537. doi: 10.1109/TMTT.2020.3045722
  • Li H, Zhou Z, Li Y. Length-irrelevant dual-polarized antenna based on antiphase epsilon-near-zero mode. IEEE Trans Antennas Propag. 2021;70(1):720–725. doi: 10.1109/TAP.2021.3098548
  • Ding C, Wang Y, Zhou J, et al. Complex permittivity measurements of liquid crystals using epsilon-near-zero metamaterials. IEEE Trans Antennas propagation. 2023;71(11):8762–8772.
  • Lobato-Morales H, Murthy D, Corona-Chávez A, et al. Permittivity measurements at microwave frequencies using epsilon-near-zero (enz) tunnel structure. IEEE Trans Microwave Theory Tech. 2011;59(7):1863–1868. doi: 10.1109/TMTT.2011.2132141
  • Li H, Zhou Z, He Y, et al. Geometry-independent antenna based on epsilon-near-zero medium. Nat Commun. 2022;13(1):3568. doi: 10.1038/s41467-022-31013-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.