327
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Predicting Confrontation Naming in the Logopenic Variant of Primary Progressive Aphasia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 635-666 | Received 11 Jul 2022, Accepted 31 May 2023, Published online: 12 Jun 2023

References

  • Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word-naming and lexical decision times. Psychological Science, 17(9), 814–823. https://doi.org/10.1111/j.1467-9280.2006.01787.x
  • Adlam, A.-L. R., Patterson, K., Bozeat, S., & Hodges, J. R. (2010). The Cambridge Semantic Memory Test Battery: Detection of semantic deficits in semantic dementia and Alzheimer’s disease. Neurocase, 16(3), 193–207. https://doi.org/10.1080/13554790903405693
  • Alario, F., Ferrand, L., Laganaro, M., New, B., Frauenfelder, U. H., & Segui, J. (2004). Predictors of picture naming speed. Behavior Research Methods, Instruments, & Computers, 36(1), 140–155. https://doi.org/10.3758/BF03195559
  • Almeida, J., Knobel, M., Finkbeiner, M., & Caramazza, A. (2007). The locus of the frequency effect in picture naming: When recognizing is not enough. Psychonomic Bulletin & Review, 14(6), 1177–1182. https://doi.org/10.3758/BF03193109
  • Alyahya, R. S. W., Halai, A. D., Conroy, P., & Lambon Ralph, M. A. (2020). Mapping psycholinguistic features to the neuropsychological and lesion profiles in aphasia. Cortex, 124, 260–273. https://doi.org/10.1016/j.cortex.2019.12.002
  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007
  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018
  • Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39(3), 445–459. https://doi.org/10.3758/BF03193014
  • Barry, C., Morrison, C. M., & Ellis, A. W. (1997). Naming the Snodgrass and Vanderwart pictures: Effects of age of acquisition, frequency, and name agreement. The Quarterly Journal of Experimental Psychology: Section A, 50(3), 560–585. https://doi.org/10.1080/783663595
  • Bastiaanse, R., Wieling, M., & Wolthuis, N. (2016). The role of frequency in the retrieval of nouns and verbs in aphasia. Aphasiology, 30(11), 1221–1239. https://doi.org/10.1080/02687038.2015.1100709
  • Beeson, P. M., Rising, K., Kim, E. S., & Rapcsak, S. Z. (2010). A treatment sequence for phonological alexia/agraphia. Journal of Speech, Language, and Hearing Research. https://doi.org/10.1044/1092-4388(2009/08-0229)
  • Beeson, P. M., Rising, K., Sachs, A., & Rapcsak, S. Z. (2022). Common predictors of spoken and written language performance in aphasia, alexia, and agraphia. Frontiers in Human Neuroscience, 16, 719. https://doi.org/10.3389/fnhum.2022.1025468
  • Bird, H., Lambon Ralph, M. A., Patterson, K., & Hodges, J. R. (2000). The rise and fall of frequency and imageability: Noun and verb production in semantic dementia. Brain and Language, 73(1), 17–49. https://doi.org/10.1006/brln.2000.2293
  • Bonin, P., Chalard, M., Méot, A., & Fayol, M. (2002). The determinants of spoken and written picture naming latencies. British Journal of Psychology, 93(1), 89–114. https://doi.org/10.1348/000712602162463
  • Bormann, T. (2011). The role of lexical-semantic neighborhood in object naming: implications for models of lexical access. Frontiers in Psychology, 2, 127. https://doi.org/10.3389/fpsyg.2011.00127
  • Braun, E. J., & Kiran, S. (2022). Stimulus-and Person-Level Variables Influence Word Production and Response to Anomia Treatment for Individuals With Chronic Poststroke Aphasia. Journal of Speech, Language, and Hearing Research, 65(10), 3854–3872. https://doi.org/10.1044/2022_JSLHR-21-00527
  • Brown, G. D. A., & Watson, F. L. (1987). First in, first out: Word learning age and spoken word frequency as predictors of word familiarity and word naming latency. Memory & Cognition, 15, 208–216. https://doi.org/10.3758/BF03197718
  • Brysbaert, M., & Ellis, A. W. (2016). Aphasia and age of acquisition: are early-learned words more resilient? Aphasiology, 30(11), 1240–1263. https://doi.org/10.1080/02687038.2015.1106439
  • Brysbaert, M., & Ghyselinck, M. (2006). The effect of age of acquisition: Partly frequency related, partly frequency independent. Visual Cognition, 13(7–8), 992–1011. https://doi.org/10.1080/13506280544000165
  • Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The word frequency effect in word processing: An updated review. Current Directions in Psychological Science, 27(1), 45–50. https://doi.org/10.1177/0963721417727521
  • Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. https://doi.org/10.3758/BRM.41.4.977
  • Chang, Y.-N., Monaghan, P., & Welbourne, S. (2019). A computational model of reading across development: Effects of literacy onset on language processing. Journal of Memory and Language, 108, 104025. https://doi.org/10.1016/j.jml.2019.05.003
  • Clark, H. M., Utianski, R. L., Duffy, J. R., Strand, E. A., Botha, H., Josephs, K. A., & Whitwell, J. L. (2020). Western Aphasia Battery–Revised profiles in primary progressive aphasia and primary progressive apraxia of speech. American Journal of Speech-Language Pathology, 29(1S), 498–510. https://doi.org/10.1044/2019_AJSLP-CAC48-18-0217
  • Dabul, B. (2000). Apraxia battery for adults: Examiner’s manual. Pro-ed.
  • Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Examiner’s Manual for the Delis-Kaplan Executive Function System. In Child Neuropsychology 10(2). http://doi.org/10.1080/09297040490911140
  • Dell, G. S., Chang, F., & Griffin, Z. M. (1999). Connectionist models of language production: Lexical access and grammatical encoding. Cognitive Science, 23(4), 517–542. https://doi.org/10.1207/s15516709cog2304_6
  • Dunn, L. M., & Dunn, D. M. (2007). PPVT-4: Peabody picture vocabulary test. Pearson Assessments.
  • Eikelboom, W. S., Janssen, N., Jiskoot, L. C., van den Berg, E., Roelofs, A., & Kessels, R. P. C. (2018). Episodic and working memory function in Primary Progressive Aphasia: A meta-analysis. Neuroscience & Biobehavioral Reviews, 92, 243–254. https://doi.org/10.1016/j.neubiorev.2018.06.015
  • Ellis, A. W., & Lambon Ralph, M. A. (2000). Age of Acquisition Effects in Adult Lexical Processing Reflect Loss of Plasticity in Maturing Systems: Insights from Connectionist Networks. Journal of Experimental Psychology: Learning Memory and Cognition, 26(5), 1103–1123. https://doi.org/10.1037/0278-7393.26.5.1103
  • Fieder, N., Wartenburger, I., & Abdel Rahman, R. (2019). A close call: Interference from semantic neighbourhood density and similarity in language production. Memory & Cognition, 47(1), 145–168. https://doi.org/10.3758/s13421-018-0856-y
  • Gao, C., Shinkareva, S. V, & Desai, R. H. (2022). Scope: The south carolina psycholinguistic metabase. Behavior Research Methods, 1–32. https://doi.org/10.3758/s13428-022-01934-0
  • Gathercole, S. E., Willis, C. S., Baddeley, A. D., & Emslie, H. (1994). The children’s test of nonword repetition: A test of phonological working memory. Memory, 2(2), 103–127. https://doi.org/10.1080/09658219408258940
  • Gerhand, S., & Barry, C. (1998). Word frequency effects in oral reading are not merely age-of-acquisition effects in disguise. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(2), 267. https://doi.org/10.1037/0278-7393.24.2.267
  • Gerhand, S., & Barry, C. (1999). Age of acquisition, word frequency, and the role of phonology in the lexical decision task. Memory & Cognition, 27(4), 592–602. https://doi.org/10.3758/BF03211553
  • Ghasisin, L., Yadegari, F., Rahgozar, M., Nazari, A., & Rastegarianzade, N. (2015). A new set of 272 pictures for psycholinguistic studies: Persian norms for name agreement, image agreement, conceptual familiarity, visual complexity, and age of acquisition. Behavior Research Methods, 47(4), 1148–1158. https://doi.org/10.3758/s13428-014-0537-0
  • Ghyselinck, M., Lewis, M. B., & Brysbaert, M. (2004). Age of acquisition and the cumulative-frequency hypothesis: A review of the literature and a new multi-task investigation. Acta Psychologica, 115(1), 43–67. https://doi.org/10.1016/j.actpsy.2003.11.002
  • Giannini, L. A. A., Irwin, D. J., McMillan, C. T., Ash, S., Rascovsky, K., Wolk, D. A., Van Deerlin, V. M., Lee, E. B., Trojanowski, J. Q., & Grossman, M. (2017). Clinical marker for Alzheimer disease pathology in logopenic primary progressive aphasia. Neurology, 88(24), 2276–2284. https://doi.org/10.1212/WNL.0000000000004034
  • Gorno‐Tempini, M. L., Dronkers, N. F., Rankin, K. P., Ogar, J. M., Phengrasamy, L., Rosen, H. J., Johnson, J. K., Weiner, M. W., & Miller, B. L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 55(3), 335–346. https://doi.org/10.1002/ana.10825
  • Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6
  • Graves, W. W., Grabowski, T. J., Mehta, S., & Gordon, J. K. (2007). A neural signature of phonological access: distinguishing the effects of word frequency from familiarity and length in overt picture naming. Journal of Cognitive Neuroscience, 19(4), 617–631. https://doi.org/10.1162/jocn.2007.19.4.617
  • Harmon, T. G., Nielsen, C., Loveridge, C., & Williams, C. (2022). Effects of Positive and Negative Emotions on Picture Naming for People With Mild-to-Moderate Aphasia: A Preliminary Investigation. Journal of Speech, Language, and Hearing Research, 65(3), 1025–1043. https://doi.org/10.1044/2021_JSLHR-21-00190
  • Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications.
  • Heikkola, L. M., Kuzmina, E., & Jensen, B. U. (2021). Predictors of object naming in aphasia: does cognitive control mediate the effects of psycholinguistic variables? Aphasiology, 1–18. https://doi.org/10.1080/02687038.2021.1950607
  • Henderson, S. K., Peterson, K. A., Patterson, K., Lambon Ralph, M. A., & Rowe, J. B. (2023). Verbal fluency tests assess global cognitive status but have limited diagnostic differentiation: evidence from a large-scale examination of six neurodegenerative diseases. Brain Communications, 5(2), fcad042. https://doi.org/10.1093/braincomms/fcad042
  • Henry, M. L., Beeson, P. M., Alexander, G. E., & Rapcsak, S. Z. (2012). Written language impairments in primary progressive aphasia: a reflection of damage to central semantic and phonological processes. Journal of Cognitive Neuroscience, 24(2), 261–275. https://doi.org/10.1162/jocn_a_00153
  • Henry, M. L., & Gorno-Tempini, M. L. (2010). The logopenic variant of primary progressive aphasia. Current Opinion in Neurology, 23(6), 633. https://doi.org/10.1097/WCO.0b013e32833fb93e
  • Henry, M. L., & Grasso, S. M. (2018). Assessment of individuals with primary progressive aphasia. Seminars in Speech and Language, 39(03), 231–241. https://doi.org/10.1055/s-0038-1660782
  • Henry, M. L., Wilson, S. M., Babiak, M. C., Mandelli, M. L., Beeson, P. M., Miller, Z. A., & Gorno-Tempini, M. L. (2016). Phonological processing in primary progressive aphasia. Journal of Cognitive Neuroscience, 28(2), 210–222. https://doi.org/10.1162/jocn_a_00901
  • Himmanen, S. A., Gentles, K., & Sailor, K. (2003). Rated familiarity, visual complexity, and image agreement and their relation to naming difficulty for items from the Boston Naming Test. Journal of Clinical and Experimental Neuropsychology, 25(8), 1178–1185. https://doi.org/10.1076/jcen.25.8.1178.16729
  • Hinojosa, J. A., Méndez-Bértolo, C., Carretié, L., & Pozo, M. A. (2010). Emotion modulates language production during covert picture naming. Neuropsychologia, 48(6), 1725–1734. https://doi.org/10.1016/j.neuropsychologia.2010.02.020
  • Hoffman, P., Meteyard, L., & Patterson, K. (2014). Broadly speaking: Vocabulary in semantic dementia shifts towards general, semantically diverse words. Cortex, 55, 30–42. https://doi.org/10.1016/j.cortex.2012.11.004
  • Juhasz, B. J. (2005). Age-of-acquisition effects in word and picture identification. Psychological Bulletin, 131(5), 684. https://doi.org/10.1037/0033-2909.131.5.684
  • Jurafsky, D. (2003). Probabilistic modeling in psycholinguistics: Linguistic comprehension and production. Probabilistic Linguistics, 21.
  • Kamath, V., Sutherland, E. R., & Chaney, G.-A. (2020). A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: Comparison with the semantic and non-fluent variants. Journal of the International Neuropsychological Society, 26(3), 322–330. https://doi.org/10.1017/S1355617719001115
  • Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston naming test.
  • Kay, J., Lesser, R., & Coltheart, M. (1996). Psycholinguistic assessments of language processing in aphasia (PALPA): An introduction. Aphasiology, 10(2), 159–180. https://doi.org/10.1080/02687039608248403
  • Kertesz, A. (2007). Western Aphasia Battery–Revised. The Psychological Corporation. https://doi.org/10.1037/t15168-000
  • Kittredge, A. K., Dell, G. S., Verkuilen, J., & Schwartz, M. F. (2008). Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cognitive Neuropsychology, 25(4), 463–492. https://doi.org/10.1080/02643290701674851
  • Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B. (2014). Emotion and language: valence and arousal affect word recognition. Journal of Experimental Psychology: General, 143(3), 1065. https://doi.org/10.1037/a0035669
  • Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44(4), 978–990. https://doi.org/10.3758/s13428-012-0210-4
  • Lambon Ralph, M. A., & Ehsan, S. (2006). Age of acquisition effects depend on the mapping between representations and the frequency of occurrence: Empirical and computational evidence. Visual Cognition. https://doi.org/10.1080/13506280544000110
  • Lambon Ralph, M. A., Graham, K. S., Ellis, A. W., & Hodges, J. R. (1998). Naming in semantic dementia—what matters? Neuropsychologia, 36(8), 775–784.
  • Lambon Ralph, M. A., Moriarty, L., & Sage, K. (2002). Anomia is simply a reflection of semantic and phonological impairments: Evidence from a case-series study. Aphasiology, 16(1–2), 56–82.
  • Lambon Ralph, M. A., Sage, K., & Roberts, J. (2000). Classical anomia: A neuropsychological perspective on speech production. Neuropsychologia, 38(2), 186–202. https://doi.org/10.1016/S0028-3932(97)00169-3
  • Lampe, L. F., Hameau, S., Fieder, N., & Nickels, L. (2021). Effects of semantic variables on word production in aphasia. Cortex, 141, 363–402. https://doi.org/10.1016/j.cortex.2021.02.020
  • Leach, L. (2000). The Kaplan–Baycrest neurocognitive assessment (KBNA): TEST manual. San Antonio, TX: Harcourt Assessment.
  • Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98(23), 13464–13471. https://doi.org/10.1073/pnas.231459498
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1–38. https://doi.org/10.1017/S0140525X99001776
  • Lewellen, M. J., Goldinger, S. D., Pisoni, D. B., & Greene, B. G. (1993). Lexical familiarity and processing efficiency: individual differences in naming, lexical decision, and semantic categorization. Journal of Experimental Psychology: General, 122(3), 316. https://doi.org/10.1037/0096-3445.122.3.316
  • Lewis, M. B. (1999). Age of acquisition in face categorisation: Is there an instance-based account? Cognition, 71(1), B23–B39. https://doi.org/10.1016/S0010-0277(99)00020-7
  • Leyton, C. E., Ballard, K. J., Piguet, O., & Hodges, J. R. (2014). Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology, 82(18), 1620–1627. https://doi.org/10.1212/WNL.0000000000000387
  • Leyton, C. E., Hodges, J. R., McLean, C. A., Kril, J. J., Piguet, O., & Ballard, K. J. (2015). Is the logopenic-variant of primary progressive aphasia a unitary disorder? Cortex, 67, 122–133. https://doi.org/10.1016/j.cortex.2015.03.011
  • Leyton, C. E., Piguet, O., Savage, S., Burrell, J., & Hodges, J. R. (2012). The neural basis of logopenic progressive aphasia. Journal of Alzheimer’s Disease, 32(4), 1051–1059. https://doi.org/10.3233/JAD-2012-121042
  • Leyton, C. E., Villemagne, V. L., Savage, S., Pike, K. E., Ballard, K. J., Piguet, O., Burrell, J. R., Rowe, C. C., & Hodges, J. R. (2011). Subtypes of progressive aphasia: application of the international consensus criteria and validation using β-amyloid imaging. Brain, 134(10), 3030–3043. https://doi.org/10.1093/brain/awr216
  • Louwersheimer, E., Keulen, M. A., Steenwijk, M. D., Wattjes, M. P., Jiskoot, L. C., Vrenken, H., Teunissen, C. E., van Berckel, B. N. M., Van Der Flier, W. M., & Scheltens, P. (2016). Heterogeneous language profiles in patients with primary progressive aphasia due to Alzheimer’s disease. Journal of Alzheimer’s Disease, 51(2), 581–590. https://doi.org/10.3233/JAD-150812
  • Lukic, S., Mandelli, M. L., Welch, A., Jordan, K., Shwe, W., Neuhaus, J., Miller, Z., Hubbard, H. I., Henry, M., & Miller, B. L. (2019). Neurocognitive basis of repetition deficits in primary progressive aphasia. Brain and Language, 194, 35–45. https://doi.org/10.1016/j.bandl.2019.04.003
  • Medina, J., & Weintraub, S. (2007). Depression in primary progressive aphasia. Journal of Geriatric Psychiatry and Neurology, 20(3), 153–160. https://doi.org/10.1177/0891988707303603
  • Mesulam, M. M., Coventry, C. A., Bigio, E. H., Sridhar, J., Gill, N., Fought, A. J., Zhang, H., Thompson, C. K., Geula, C., & Gefen, T. (2022). Neuropathological fingerprints of survival, atrophy and language in primary progressive aphasia. Brain. https://doi.org/10.1093/brain/awab410
  • Mesulam, M. M., Rogalski, E. J., Wieneke, C., Hurley, R. S., Geula, C., Bigio, E. H., Thompson, C. K., & Weintraub, S. (2014). Primary progressive aphasia and the evolving neurology of the language network. Nature Reviews Neurology, 10(10), 554–569. https://doi.org/10.1038/nrneurol.2014.159
  • Migliaccio, R., Boutet, C., Valabregue, R., Ferrieux, S., Nogues, M., Lehéricy, S., Dormont, D., Levy, R., Dubois, B., & Teichmann, M. (2016). The brain network of naming: a lesson from primary progressive aphasia. PloS One, 11(2), e0148707. https://doi.org/10.1371/journal.pone.0148707
  • Mirman, D. (2011). Effects of near and distant semantic neighbors on word production. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 32–43. https://doi.org/10.3758/s13415-010-0009-7
  • Mohammad, S. (2018). Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 174–184. https://doi.org/10.18653/v1/P18-1017
  • Morrison, C. M., & Ellis, A. W. (1995). Roles of word frequency and age of acquisition in word naming and lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 116. https://doi.org/10.1037/0278-7393.21.1.116
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Newton, C., Thornley, H., & Bruce, C. (2020). The influence of emotional valence on word recognition in people with aphasia. Language, Cognition and Neuroscience, 35(8), 1064–1072. https://doi.org/10.1080/23273798.2020.1713385
  • Nicholas, L. E., Brookshire, R. H., Maclennan, D. L., Schumacher, J. G., & Porrazzo, S. A. (1989). Revised administration and scoring procedures for the Boston Naming Test and norms for non-brain-damaged adults. Aphasiology, 3(6), 569–580. https://doi.org/10.1080/02687038908249023
  • Nickels, L., & Howard, D. (1995). Aphasic naming: What matters? Neuropsychologia, 33(10), 1281–1303. https://doi.org/10.1016/0028-3932(95)00102-9
  • Peramunage, D., Blumstein, S. E., Myers, E. B., Goldrick, M., & Baese-Berk, M. (2011). Phonological neighborhood effects in spoken word production: An fMRI study. Journal of Cognitive Neuroscience, 23(3), 593–603. https://doi.org/10.1162/jocn.2010.21489
  • Perret, C., & Bonin, P. (2019). Which variables should be controlled for to investigate picture naming in adults? A Bayesian meta-analysis. Behavior Research Methods, 51(6), 2533–2545. https://doi.org/10.3758/s13428-018-1100-1
  • Petroi, D., Duffy, J. R., Borgert, A., Strand, E. A., Machulda, M. M., Senjem, M. L., Jack Jr, C. R., Josephs, K. A., & Whitwell, J. L. (2020). Neuroanatomical correlates of phonologic errors in logopenic progressive aphasia. Brain and Language, 204, 104773. https://doi.org/10.1016/j.bandl.2020.104773
  • Pisoni, D. B., Nusbaum, H. C., Luce, P. A., & Slowiaczek, L. M. (1985). Speech perception, word recognition and the structure of the lexicon. Speech Communication, 4(1–3), 75–95. https://doi.org/10.1016/0167-6393(85)90037-8
  • Pitt, M. A., & Samuel, A. G. (2006). Word length and lexical activation: longer is better. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1120. https://doi.org/10.1037/0096-1523.32.5.1120
  • Ramanan, S., Irish, M., Patterson, K., Rowe, J. B., Gorno-Tempini, M. L., & Lambon Ralph, M. A. (2022). Understanding the multidimensional cognitive deficits of logopenic variant primary progressive aphasia. Brain, 145(9), 2955–2966. https://doi.org/10.1093/brain/awac208
  • Rapcsak, S. Z., & Beeson, P. M. (2004). The role of left posterior inferior temporal cortex in spelling. Neurology, 62(12), 2221–2229. https://doi.org/10.1212/01.WNL.0000130169.60752.C5
  • Recio, G., Conrad, M., Hansen, L. B., & Jacobs, A. M. (2014). On pleasure and thrill: The interplay between arousal and valence during visual word recognition. Brain and Language, 134, 34–43. https://doi.org/10.1016/j.bandl.2014.03.009
  • Rogalsky, C., & Hickok, G. (2011). The role of Broca’s area in sentence comprehension. In Journal of Cognitive Neuroscience. https://doi.org/10.1162/jocn.2010.21530
  • Rohrer, J. D., Caso, F., Mahoney, C., Henry, M., Rosen, H. J., Rabinovici, G., Rossor, M. N., Miller, B., Warren, J. D., & Fox, N. C. (2013). Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. Brain and Language, 127(2), 121–126. https://doi.org/10.1016/j.bandl.2012.12.008
  • Rohrer, J. D., Ridgway, G. R., Crutch, S. J., Hailstone, J., Goll, J. C., Clarkson, M. J., Mead, S., Beck, J., Mummery, C., & Ourselin, S. (2010). Progressive logopenic/phonological aphasia: erosion of the language network. Neuroimage, 49(1), 984–993. https://doi.org/10.1016/j.neuroimage.2009.08.002
  • Schwartz, M. F., Dell, G. S., Martin, N., Gahl, S., & Sobel, P. (2006). A case-series test of the interactive two-step model of lexical access: Evidence from picture naming. Journal of Memory and Language, 54(2), 228–264. https://doi.org/10.1016/j.jml.2005.10.001
  • Shaoul, C., & Westbury, C. (2010). Exploring lexical co-occurrence space using HiDEx. Behavior Research Methods, 42(2), 393–413. https://doi.org/10.3758/BRM.42.2.393
  • Silveri, M. C. (2021). Contribution of the cerebellum and the basal ganglia to language production: Speech, word fluency, and sentence construction—evidence from pathology. The Cerebellum, 20(2), 282–294. https://doi.org/10.1007/s12311-020-01207-6
  • Strain, E., & Herdman, C. M. (1999). Imageability effects in word naming: an individual differences analysis. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 53(4), 347. https://doi.org/10.1037/h0087322
  • Tsai, J. L., Knutson, B., & Fung, H. H. (2006). Cultural variation in affect valuation. Journal of Personality and Social Psychology, 90(2), 288. https://doi.org/10.1037/0022-3514.90.2.288
  • Ukita, H., Abe, K., & Yamada, J. (1999). Late acquired words in childhood are lost earlier in primary progressive aphasia. Brain and Language, 70(2), 205–219. https://doi.org/10.1006/brln.1999.2152
  • Vitevitch, M. S., & Luce, P. A. (2016). Phonological neighborhood effects in spoken word perception and production. Annual Review of Linguistics, 2, 75–94. https://doi.org/10.1146/annurev-linguistics-030514-124832
  • Vitevitch, M. S., Stamer, M. K., & Sereno, J. A. (2008). Word length and lexical competition: Longer is the same as shorter. Language and Speech, 51(4), 361–383. https://doi.org/10.1177/0023830908099070
  • Vonk, J. M. J., Jonkers, R., Hubbard, H. I., Gorno-Tempini, M. L., Brickman, A. M., & Obler, L. K. (2019). Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia. Journal of the International Neuropsychological Society, 25(10), 1011–1022. https://doi.org/10.1017/S1355617719000948
  • Warrington, E. K. (1984). Recognition memory test. Western Psychological Services.
  • Wechsler, D. (2008). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San Antonio, TX: NCS Pearson, 22(498), 816–827.
  • Wilson, S. M., Isenberg, A. L., & Hickok, G. (2009). Neural correlates of word production stages delineated by parametric modulation of psycholinguistic variables. Human Brain Mapping, 30(11), 3596–3608. https://doi.org/10.1002/hbm.20782

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.