331
Views
8
CrossRef citations to date
0
Altmetric
Reviews

An introduction to the vast world of transposable elements – what about the diatoms?

, , , , , , , , , & show all
Pages 91-104 | Received 17 Dec 2012, Accepted 06 Dec 2013, Published online: 05 Feb 2014

References

  • Alzohairy A.M., Yousef M.A., Edris S., Kerti B., Gyulai G. & Bahieldin A. 2012. Detection of LTR Retrotransposons Reactivation induced by in vitro Environmental Stresses in Barley (Hordeum vulgare) via RT-qPCR. Life Science Journal 9: 5019–5026.
  • Arkhipova I.R. & Meselson M. 2005. Diverse DNA transposons in rotifers of the class Bdelloidea. Proceedings of the National Academy of Sciences 102: 11781–11786. doi: 10.1073/pnas.0505333102
  • Armbrust E.V., Berges J.A., Bowler C., Green B.R., Martinez D., Putnam N.H., Zhou S., Allen A.E., Apt K.E., Bechner M., Brzezinski M.A., Chaal B.K., Chiovitti A., Davis A.K., Demarest M.S., et al. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86. doi: 10.1126/science.1101156
  • Bachtrog D. 2006. A dynamic view of sex chromosome evolution. Current Opinion in Genetics and Development 16: 578–585. doi: 10.1016/j.gde.2006.10.007
  • Beguiristain T., Grandbastien M.A., Puigdomènech P. & Casacuberta J.M. 2001. Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology 127: 212–221. doi: 10.1104/pp.127.1.212
  • Biémont C. & Vieira C. 2006. Genetics: Junk DNA as an evolutionary force. Nature 443: 521–524. doi: 10.1038/443521a
  • Biémont C., Tsitrone A., Vieira C. & Hoogland C. 1997. Transposable element distribution in Drosophila. Genetics 147: 1997–1999.
  • Blumestiel J.P. 2011. Evolutionary dynamics of transposable elements in a small RNA world. Trends in Genetics 27: 1, 23–31. doi: 10.1016/j.tig.2010.10.003
  • Bordenstein S.R. & Reznikoff W.S. 2005. Mobile DNA in obligate intracellular bacteria. Nature Reviews Microbiology 3: 688–699. doi: 10.1038/nrmicro1233
  • Bourque G. 2009. Transposable elements in gene regulation and in the evolution of vertebrate genomes. Current Opinion in Genetic Developments 19: 607–612. doi: 10.1016/j.gde.2009.10.013
  • Bouvet G.F., Jacobi V., Plourde K.V. & Bernier L. 2008. Stress-induced mobility of OPHIO1 and OPHIO2, DNA transposons of the Dutch elm disease fungi. Fungal Genetics and Biology 45: 565–578. doi: 10.1016/j.fgb.2007.12.007
  • Bowler C., Allen A.E., Badger J.H., Grimwood J., Jabbari K., Kuo A., Maheswari U., Martens C., Maumus F., Otillar R.P., Rayko E., Salamov A., Vandepoele K., Beszteri B., Gruber A., Heijde M., Katinka M., Mock T., Valentin K., Verret F., Berges J.A., Brownlee C., Cadoret J.-P., et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244. doi: 10.1038/nature07410
  • Bowler C., Vardi A. & Allen A.E. 2010. Oceanographic and biochemical insights from diatom genomes. Annual Reviews of Marine Sciences 2: 333–365. doi: 10.1146/annurev-marine-120308-081051
  • Bui Q.T., Casse N., Leignel V., Nicolas V. & Chénais B. 2008. Widespread occurrence of mariner transposons in coastal crabs. Molecular Phylogenetics and Evolution 47: 1181–1189. doi: 10.1016/j.ympev.2008.03.029
  • Bureau T.E. & Wessler S.R. 1994. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916.
  • Burgess D.J. 2012. Genomics: Repetitive elements underestimated? Nature Reviews Genetics 13: 74.
  • Charlesworth D., Charlesworth B. & Marais, G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95: 2, 118–128. doi: 10.1038/sj.hdy.6800697
  • Capy P., Bazin C., Higuet D. & Langin T. 1998. Dynamics and evolution of transposable elements. Landes Company, Austin. 197 p.
  • Capy P., Gasperi G., Biémont C. & Bazin C. 2000. Stress and transposable elements: co-evolution or useful parasites?. Heredity 85: 101–106. doi: 10.1046/j.1365-2540.2000.00751.x
  • Casola C., Hucks D. & Feschotte C. 2008. Convergent domestication of Pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Molecular Biology and Evolution 25: 29–41. doi: 10.1093/molbev/msm221
  • Casotti R., Mazza S., Brunet C., Vantrepotte V., Ianora A. & Miralto A. 2005. Growth inhibition and toxicity of the diatom aldehyde 2-trans, 4-trans decadienal on Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology 41(1): 7–20. doi: 10.1111/j.1529-8817.2005.04052.x
  • Cerveau N., Leclercq S., Bouchon D. & Cordaux R. 2011. Evolutionary dynamics and genomic impact of prokaryote transposable elements. In: Evolutionary biology – concepts, biodiversity, macroevolution and genome evolution (Ed. by P. Pontarotti). Springer, Berlin. 345 pp.
  • Chakrani F., Capy P. & David J. 1993. Developmental temperature and somatic excision rate of mariner transposable element in three natural populations of Drosophila simulans. Genetics, Selection, Evolution 25: 121–132. doi: 10.1186/1297-9686-25-2-121
  • Chénais B., Caruso A., Hiard S. & Casse N. 2012. The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene 1: 7–15. doi: 10.1016/j.gene.2012.07.042
  • Chinwalla A.T., Cook L., Delehaunty K.D., Fewell G.A., Fulton L.A., Fulton R.S., Graves T.A. Hillier L.W., Mardis E.R., Mcpherson J.D., Miner T.L., Nash W.E., Nelson J.O., Nhan M.N., et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562. doi: 10.1038/nature01262
  • Chopra S., Brendel V., Zhang J., Axtell J.D. & Peterson T. 1999. Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable elements in Sorghum bicolor. Proceedings of the National Academy of Sciences 96: 15330–15335. doi: 10.1073/pnas.96.26.15330
  • Chung H., Bogwitz M.R., Mccart C., Andrianopoulos A., Ffrench-Constant R.H., Batterham P. & Daborn P.J. 2007. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175: 1071–1077. doi: 10.1534/genetics.106.066597
  • Claeys Bouuaert C., Lipkow K., Andrews S.S., Liu D. & Chalmers R. 2013. The autoregulation of a eukaryotic DNA transposons. eLife 2: e00668. doi: 10.7554/eLife.00668
  • Clark A.G., Eisen M.B., Smith D.R., Bergman C.M., Oliver B., Markow T.A., Kaufman T.C., Kellis M., Gelbart W., Iyer V.N., et al. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–218. doi: 10.1038/nature06341
  • Coates B.S., Hellmich R.L., Grant D.M. & Craig A.A. 2012. Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 Helitrons. DNA Research 19: 11–21. doi: 10.1093/dnares/dsr038
  • Cordeaux R. 2009. Gene conversion maintains nonfunctional transposable elements in an obligate mutualistic endosymbiont. Molecular Biology and Evolution 26: 1679–1682. doi: 10.1093/molbev/msp093
  • Crespi B. & Nosil P. 2012. Conflictual speciation: species formation via genomic conflict. Trends in Ecology and Evolution 28: 48–57. doi: 10.1016/j.tree.2012.08.015
  • Daboussi M.-J. & Capy P. 2003. Transposable elements in filamentous fungi. Annual Review of Microbiology 57: 275–299. doi: 10.1146/annurev.micro.57.030502.091029
  • De Boer J.G., Yazawa R., Davidson W.S. & Koop B.F. 2007. Bursts of horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics 8: 422. doi: 10.1186/1471-2164-8-422
  • Delauriere L., Chénais B., Hardivillier Y., Gauvry L. & Casse N. 2009. Mariner transposons as genetic tools in vertebrate cells. Genetica 137: 9–17. doi: 10.1007/s10709-009-9370-2
  • Derelle E., Ferraz C., Rombauts S., Rouze P., Worden A.Z., Robbens S., Partensky F., Degroeve S., Echeynié S., Cooke R., Saeys Y., Wuyts J., Jabbari K., Bowler C., Panaud O., Piégu B., Ball S.G., Ral J.-P., Bouget F.-Y., Piganeau G., De Baets B., Picard A., Delseny M., Demaille J., Van De Peer Y. & Moreau H. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences 103: 11647–11652. doi: 10.1073/pnas.0604795103
  • Diao X., Freeling M. & Lisch D. 2006. Horizontal transfer of a plant transposon. PLoS Biology 4: 0119–0128. doi: 10.1371/journal.pbio.0040005
  • Dombroski B., Mathias S., Nanthakumar E., Scott A. & Kazazian H. 1991. Isolation of an active human transposable element. Science 254: 1805–1808. doi: 10.1126/science.1662412
  • Falkowski P.G., Barber R.T. & Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281: 200–206. doi: 10.1126/science.281.5374.200
  • Feschotte C. & Mouchès C. 2000. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Molecular Biology and Evolution 17: 730–737. doi: 10.1093/oxfordjournals.molbev.a026351
  • Feschotte C. & Pritham E.J. 2007. DNA transposons and the evolution of eukaryotic genomes. Annual Review of Genetics 41: 331–368. doi: 10.1146/annurev.genet.40.110405.090448
  • Filee J., Siguier P. & Chandler M. 2007. Insertion sequence diversity in archaea. Microbiology and Molecular Biology Reviews 71: 121–157. doi: 10.1128/MMBR.00031-06
  • Finnegan D.J. 1989. Eukaryotic transposable elements and genome evolution. Trends in Genetics 5: 103–107. doi: 10.1016/0168-9525(89)90039-5
  • Fortune P., Roulin A. & Panaud O. 2008. Horizontal transfer of transposable elements in plants. Communicative and Integrative Biology 1: 1–4. doi: 10.4161/cib.1.1.6328
  • Gilbert C., Schaack S., Pace II J.K., Brindley P.J. & Feschotte C. 2010. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464: 1347–1350. doi: 10.1038/nature08939
  • Giraud T. & Capy P. 1996. Somatic activity of the mariner transposable element in natural populations of Drosophila simulans. Proceeding of Royal Society of London B Biology and Sciences 263: 1481–1486. doi: 10.1098/rspb.1996.0216
  • Giraud T., Fortini D., Levis C., Leroux P. & Brygoo Y. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution 14: 1177–1185. doi: 10.1093/oxfordjournals.molbev.a025727
  • Gonzalez J., Lenkov K., Lipatov M., Macpherson J.M. & Petrov D.A. 2008. High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biology 6: 2109–2119. doi: 10.1371/journal.pbio.0060251
  • Gonzalez J., Karasov T.L., Messer P.W. & Petrov D.A. 2010. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genetic 6: 1–13. doi: 10.1371/journal.pgen.1000905
  • Grandbastien M.A., Lucas H., Morel J.-B., Mhiri C., Vernhettes S. & Casacuberta J. 1997. The expression of the tobacco Tnt1 retrotransposon is linked to plant defence responses. Genetica 100: 241–252. doi: 10.1023/A:1018302216927
  • Granum E., Raven J.A. & Leegood R.C. 2005. How do marine diatoms fix 10 billion tonnes of inorganic carbon per year? Canadian Journal of Botanic 83: 898–908. doi: 10.1139/b05-077
  • Grover C.E. & Wendel J.F. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: 1–8. doi: 10.1155/2010/382732
  • Haas B.J., Kamoun S., Zody M.C., Jiang R.H.Y., Handsaker R.E., Cano L.M., Grabherr M., Kodira C.D., Raffaele S., Torto-Alabido T., Bozkurt O., Af-Fong A.M.V. Alvarado L., Anderson V.L., Miles R. 2009. Genome sequence and analysis of the irish potato famine pathogen Phytopthora infestans. Nature 461: 393–398. doi: 10.1038/nature08358
  • Hartl D. 2001. Discovery of the transposable element mariner. Genetics 157: 471–476.
  • Hashida S.-N., Kitamura K., Mikami T. & Kishima Y. 2003. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology 132: 1207–1216. doi: 10.1104/pp.102.017533
  • Hashida S.-N., Uchiyama T., Martin C., Kishima Y., Sano Y. & Mikami T. 2006. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18: 104–118. doi: 10.1105/tpc.105.037655
  • Hense W., Baines J.F. & Parsch J. 2007. X chromosome inactivation during Drosophila spermatogenesis. PLoS Biology 5: 2288–2295. doi: 10.1371/journal.pbio.0050273
  • Hermann D. 2011. Caractérisation d’éléments transposables de type mariner chez les microalgues marines. PhD. Thesis, Maine University, Le Mans.
  • Hua-Van A., Le Rouzic A., Maisonhaute C. & Capy P. 2005. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenetic and Genome Research 110: 426–440. doi: 10.1159/000084975
  • Ilves H., Hõrak R. & Kivisaar M. 2001. Involvement of ςS in starvation-induced transposition of Pseudomonas putida Transposon Tn4652. Journal of Bacteriology 183: 5445–5448. doi: 10.1128/JB.183.18.5445-5448.2001
  • Jaillet J., Genty M., Cambefort J., Rouault J.D. & Augé-Gouillou C. 2012. Regulation of Mariner transposition: The peculiar case of Mos1. PloS One 7: 1–11. doi: 10.1371/journal.pone.0043365
  • Jiang N., Bao Z., Zhang X., Eddy2 S.R. & Wessler S.R. 2004. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569–573. doi: 10.1038/nature02953
  • Joseph B., Schlueter J.A., Chang Du J., Graham M.A., Ma J. & Shoemaker R.C. 2009. Retrotransposons within syntenic regionsbetween soybean and Medicago truncatula and their contribution local genome evolution. The Plant Genome 2: 211–223. doi: 10.3835/plantgenome.2009.01.0001
  • Kalendar R., Tanskanen J., Immonen S., Nevo E. & Schulman A.H. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences 97: 6603–6607. doi: 10.1073/pnas.110587497
  • Kapitonov V.V. & Jurka J. 2004. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biology 23: 311–324. doi: 10.1089/104454904323090949
  • Kapitonov V.V. & Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biology 3: 311–324. doi: 10.1371/journal.pbio.0030181
  • Kempken F. & Kück U. 1998. Transposons in filamentous fungi-facts and perspectives. Bioessays 20: 652–659. doi: 10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K
  • Kempken F. & Windhofer F. 2001. The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110: 1–9. doi: 10.1007/s004120000118
  • Khurana J.S., Xu J., Weng Z. & Theurkauf W.E. 2010. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genetics 6: 1–8.
  • Kidwell M.G. 2002. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115: 49–63. doi: 10.1023/A:1016072014259
  • Kidwell M.G. & Lisch D.R. 2001. Perspectives: transposable elements, parasitic DNA, and genome. Evolution 55: 1–24.
  • Kimura Y., Tosa Y., Shimada S., Sogo R., Kusaba M., Sunaga T., Betsuyaku S., Eto Y., Nakayashiki H. & Mayama S. 2001a. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant and cell Physiology 42: 1345–1354. doi: 10.1093/pcp/pce171
  • Kimura R.H., Choudary P.V., Stone K.K. & Schmid C.W. 2001b. Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes. Cell Stress Chaperonne 6: 263–272.
  • Kramerov D.A. & Vassetzky N.S. 2005. Short retrotransposons in eukaryotic genomes. International Review of Cytology 247: 165–221. doi: 10.1016/S0074-7696(05)47004-7
  • Landers E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewark D.M. & Fitzhugh W., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921. doi: 10.1038/35057062
  • Leclercq S., Giraud I. & Cordaux R. 2011. Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts. Molecular Biology and Evolution 28: 685–697. doi: 10.1093/molbev/msq238
  • Le Rouzic A. & Capy P. 2005. The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 169: 1033–1043. doi: 10.1534/genetics.104.031211
  • Levy A.A. 2013. Transposons in plant speciation. In: Plant transposons and genome dynamics in evolution (Ed by N.V. Fedoroff), pp. 165–179. Wiley-Blackwell, Oxford.
  • Lohe A.R., Moriyama E.N., Lidholm D.A. & Hartl D.L. 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Molecular Biology and Evolution 12: 62–72. doi: 10.1093/oxfordjournals.molbev.a040191
  • Lopez P., Descles J., Allen A.E. & Bowler C. 2005. Prospects in diatom research. Current Opinion in Biotechnology 16: 180–186. doi: 10.1016/j.copbio.2005.02.002
  • Lorenzi H., Thiagarajan M., Haas B., Wortman J., Hall N. & Caler E. 2008. Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics 9: 1–15. doi: 10.1186/1471-2164-9-595
  • Lyon, M.F. 2000. LINE-1 elements and X chromosome inactivation: a function for ‘junk’ DNA? Proceedings of the National Academy of Sciences 97: 6248–6249. doi: 10.1073/pnas.97.12.6248
  • Ma L.J., Van Der Does H.C., Borkovich K.A., Coleman J.J., Daboussi M.J., Di Pietro A., Dufresne M., Freitag M., Grabherr M., Henrissat B., et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373. doi: 10.1038/nature08850
  • Macas J. & Neumann P. 2007. Ogre elements-A distinct group of plant Ty3/Gypsy-like retrotransposons. Gene 390: 108–116. doi: 10.1016/j.gene.2006.08.007
  • Macas J., Koblizkova A. & Neumann P. 2005. Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome 48: 831–839. doi: 10.1139/g05-047
  • Machida C. & Machida Y. 1989. Regulation of IS1 transposition by the insA gene product. Journal of Molecular Biology 208: 567–574. doi: 10.1016/0022-2836(89)90148-4
  • Maheswari U., Mock T., Armbrust V. & Bowler C. 2009. Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Research 37: D1001–D1005. doi: 10.1093/nar/gkn905
  • Masly J.P., Jones C.D., Noor M.A.F., Locke J. & Orr H.A. 2006. Gene transposition as a cause of hybrid sterility in Drosophila. Science 313: 1448–1450. doi: 10.1126/science.1128721
  • Maumus F., Allen A., Mhiri C., Hu H., Jabbari K., Vardi A., Grandbastien M.-A. & Bowler C. 2009. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 10: 1–19. doi: 10.1186/1471-2164-10-624
  • McClintock B. 1951. Chromosome organization and genic expression. Cold Spring Harbor Symposium on Quantitative Biology 16: 13–47. doi: 10.1101/SQB.1951.016.01.004
  • McClintock B. 1984. The significance of responses of the genome to challenge. Science 226: 792–801. doi: 10.1126/science.15739260
  • Merchant S.S., Prochnik S.E., Vallon O., Harris E.H., Karpowicz S.J., Witman G.B., Terry A., Salamov A., Fritz-Laylin L.K., Maréchal-Drouard L., Marshall W.F., Qu L.-H., Nelson D.R., Sanderfoot A.A., Spalding M.H., Kapitonov V.V., Ren Q., Ferris P., Lindquist E., Shapiro H., et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250. doi: 10.1126/science.1143609
  • Meyer T.J., McLain AT, Oldenburg J.M., Faulk C., Bourgeois M.G., Conlin E.M., Mootnick A.R., De Jong P.J., Roos C., Carbone L. & Batzer M.A. 2012. An Alu based phylogeny of gibbons (Hylobatidae). Molecular Biology and Evolution 29: 3441–3450. doi: 10.1093/molbev/mss149
  • Mhiri C., Morel J.B., Vernhettes S., Casacuberta J.M., Lucas H. & Grandbastien M.-A. 1997. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Molecular Biology 33: 257–266. doi: 10.1023/A:1005727132202
  • Monden Y., Naito K., Okumoto Y., Saito H., Oki N., Tsukyama T., Ideta O., Nagazaki T., Wessler S.R. & Tanisaka T. 2009. High potential of a transposon mPing as a marker system in japonica x japonica cross in rice. DNA Research 16: 131–140. doi: 10.1093/dnares/dsp004
  • Montsant A., Jabbari K., Maheswari U. & Bowler C. 2005. Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiology 137: 500–513. doi: 10.1104/pp.104.052829
  • Muñoz-Diez C., Vitte C., Ross-Ibarra J., Gaut B.S. & Tenaillon M.I. 2012. Using nextgen sequencing to investigate genome size variation and transposable element content. In: Plant transposable elements. Springer Berlin Heidelberg, 41–58 pp.
  • Nagy Z. & Chandler M. 2004. Regulation of transposition in bacteria. Research in Microbiology 155: 387–398. doi: 10.1016/j.resmic.2004.01.008
  • Nelson D., Treguer M., Brzezinski P., Leynaert M.A. & Queguiner B. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochemistery Cycles 9: 359–372. doi: 10.1029/95GB01070
  • Norden-Krichmar T.M., Allen A.E., Gaasterland T. & Hildebrand M. 2011. Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 6: 1–12. doi: 10.1371/journal.pone.0022870
  • Ogasawara H., Obata H., Hata Y., Takahashi S. & Gomi K. 2009. Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genetics and Biology 46: 441–449. doi: 10.1016/j.fgb.2009.02.007
  • Oliver K.R. & Greene W.K. 2009. Transposable elements: powerful facilitators of evolution. Bioessays 31: 703–714. doi: 10.1002/bies.200800219
  • Oliver K.R. & Greene W.K. 2012. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecology and Evolution 2: 2912–2933. doi: 10.1002/ece3.400
  • Oliver M.J., Schofield O. & Bidle K. 2010. Density dependent expression of a diatom retrotransposon. Marine Genomics 3: 145–150. doi: 10.1016/j.margen.2010.08.006
  • Palazzoli F., Testu F.X., Merly F. & Bigot Y. 2010. Transposon tools: worldwide landscape of intellectual property and technological developments. Genetica 138: 285–299. doi: 10.1007/s10709-009-9426-3
  • Parisod C., Alix K., Just J., Petit M., Sarilar V., Mhiri C., Ainouche M., Chalhoub B. & Grandbastien M.A. 2010. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytologist 186: 37–45. doi: 10.1111/j.1469-8137.2009.03096.x
  • Park M., Park J., Kim S., Kwon J.-K., Park H.M., Bae I.H., Yang T.-J., Lee Y.H., Kang B.-C. & Choi D. 2012. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. The Plant Journal 9: 1018–1029. doi: 10.1111/j.1365-313X.2011.04851.x
  • Pasyukova E.G., Nuzhdin S.V., Morozova T.V., Mackay T.F. 2004. Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness. Journal of Heredity 95: 284–290. doi: 10.1093/jhered/esh050
  • Paterson A.H., Bowers J.E., Bruggman R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitros T., Poliakov A., et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556. doi: 10.1038/nature07723
  • Pereira A., Cuypers H., Gierl A., Schwarz-Sommer Z., Saedler H. 1986. Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO Journal 5: 835–841.
  • Piednoël M. & Bonnivard E. 2009. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms. BMC Evolutionary Biology 9: 1–15. doi: 10.1186/1471-2148-9-86
  • Piednoël M., Aberer A.J., Schneeweiss G.M., Macas J., Novak P., Gundlach H., Temsh E.M. & Renner S.S. 2012. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Molecular Biology and Evolution 29: 3601–3611. doi: 10.1093/molbev/mss168
  • Piegu B., Guyot R., Picault N., Roulin A., Saniyal A., Kim H., Collura K., Brar D.S., Jackson S., Wing R.A. & Panaud O. 2006. Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Research 16: 1262–1269. doi: 10.1101/gr.5290206
  • Rakocevic A., Mondy S., Tirichine L., Cosson V., Brocard L., Iantcheva A., Cayrel A., Devier B., El-Heba G.A.A. & Ratet P. 2009. MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiology 151: 1250–1263. doi: 10.1104/pp.109.138024
  • Ray D.A., Feschotte C., Pagan H.J.T., Smith J.D., Pritham E.J., Arensburger P., Atkinson P.W. & Craig N.L. 2008. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Research 18: 632–639. doi: 10.1101/gr.071886.107
  • Robertson H.M. 1993. The mariner transposable element is widespread in insects. Nature 362: 241–245. doi: 10.1038/362241a0
  • Robertson H.M. & Lampe D.J. 1995. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Molecular Biology and Evolution 12: 850–862.
  • Rocap G., Larimer F.W., Lamerdlin J., Malfatti A., Chain P., Ahlgren A.A., Coleman M., Hauser L., Hess W.R., Johnson Z.I., Land M., Lindell D., Post A.F., Regala W., Shah M., Shaw S.L., Steglich C., Sullivan M.B., Ting C.S., Tolonen A., Webb E.A., Zinser E.R. & Chisholm S.W. 2003. Genome divergence in two Prochlorococcus ecoypes reflects oceanic niche differentiation. Nature 424: 1042–1047. doi: 10.1038/nature01947
  • Rose M.R. & Doolittle F. 1983. Molecular biological mechanisms of speciation. Sciences 220: 157–162. doi: 10.1126/science.220.4593.157
  • Roulin A., Piégu B., Wing R. & Panaud O. 2008. Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. The Plant Journal 53: 950–959. doi: 10.1111/j.1365-313X.2007.03388.x
  • Round F.E., Crawford R.M. & Mann D.G. 1990. The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge.
  • Rubin G.M., Kidwell M.G. & Bingham P.M. 1982. The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations. Cell 29: 987–994. doi: 10.1016/0092-8674(82)90462-7
  • Sasakura Y., Konno A., Mizuno K., Satoh N., Inaba K. 2008. Enhancer detection in the ascidian Ciona intestinalis with transposase expressing lines of Minos. Developemental Dynamics 237: 39–50. doi: 10.1002/dvdy.21333
  • Scala S., Carels N., Falciatore A., Chiusano L.C. & Bowler C. 2002. Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol. 129: 993–1002. doi: 10.1104/pp.010713
  • Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternack S., LIANG C., Zhang J., Fulton L., Graves T.A., Minx P., Reily A.D., Courtney L., Kruchowski S.S., Tomlinson C., Strong C., et al. 2009. The B73 Maize genome: complexity, diversity and dynamics. Science 326: 1112–1115. doi: 10.1126/science.1178534
  • Sharma A., Schneider K.L. & Presting G.G. 2008. Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations. Proceedings of the National Academy of Sciences 105: 15470–15474. doi: 10.1073/pnas.0805694105
  • Shirasawa K., Hirakawa H., Tabata S., Hasegawa M., Kiyoshima H., Suzuki S., Sasamoto S., Watanabe A., Fujishiro T. & Isobe S. 2012. Characterization of active miniature inverted-repeat transposable element in the peanut genome. Theorical and Applied Genetics 124: 1429–1438. doi: 10.1007/s00122-012-1798-6
  • Silva J.C. & Kidwell M.G. 2004. Evolution of P elements in natural populations of Drosophila willistoni and D. sturtevanti. Genetics 168: 1323–1335. doi: 10.1534/genetics.103.025775
  • Sinzelle L., Izsvák Z. & Ivics Z. 2009. Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cellular and Molecular Life Sciences 66: 1073–1093. doi: 10.1007/s00018-009-8376-3
  • Slotkin R.K. & Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8: 272–285. doi: 10.1038/nrg2072
  • Smetacek V. 1999. Diatom and the ocean Carbonic cycle. Protist 150: 25–32. doi: 10.1016/S1434-4610(99)70006-4
  • Smit A.F. 1996. The origin of interspersed repeats in the human genome. Current Opinion in Genetics and Development 6: 743–748. doi: 10.1016/S0959-437X(96)80030-X
  • Strand D.J. & Mc Donald J.F. 1985. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Research 13: 4401–4410. doi: 10.1093/nar/13.12.4401
  • Suh A., Kriegs J.O., Donnellan S., Brosius J. & Schmitz J. 2012. A universal method for the study of CR1 Retrotranspososns in nonmodel bird genomes. Molecular Biology and Evolution 29: 2899–2903. doi: 10.1093/molbev/mss124
  • Takahashi R., Morita Y., Nakayama M., Kanazawa A. & Abe J. 2012. An Active CACTA-Family transposable element is responsible for flower variegation in wild soybean Glycine soja. The Plant Genome, 5: 62–70. doi: 10.3835/plantgenome2011.11.0028
  • Takeda S., Sugimoto K. & Hirochika H. 1999. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissues culture, wounding, methyl jasmonate and fungal elicitor. The Plant Journal 18: 383–393. doi: 10.1046/j.1365-313X.1999.00460.x
  • Tapia G., Verdugo I., Yanez M., Ahumada I., Thoeduloz C., Cordero C., Poblete F., Gonzalez E. & Ruiz-Lara S. 2005. Involvement of ethylene in stress-induced expression of the TLC.11 retrotransposon from Lycopersicon chilense Dun. Plant Physiology 138: 1596–1599. doi: 10.1104/pp.105.059766
  • Testori A., Caizzi L., Cutrupi S., Friard O., De Bortoli M. & Caselle M. 2012. The role of transposable elements in shaping the combinatorial interaction of transcription factors. BMC Genomics 13: 1–16. doi: 10.1186/1471-2164-13-400
  • Tian Z., Yu Y., Lin F., Yu Y., Sanmiguel P.J., Wing R.A., Mccouch S.R., Ma J.M. & Jackson S.A. 2011. Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analisis. BMC Genomics 12: 1–12. doi: 10.1186/1471-2164-12-142
  • Tirichine L. & Bowler C. 2011. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant Journal 66: 45–57. doi: 10.1111/j.1365-313X.2011.04540.x
  • Treangen T.J., Abraham A.L., Touchon M. & Rocha E.P. 2009. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews 33: 539–571. doi: 10.1111/j.1574-6976.2009.00169.x
  • Vitte C. & Panaud O. 2005. Retrotransposon and flowering plant genomes size: emergence of a increase/decrease model. Cytogenetic and Genome Research. 110: 91–107. doi: 10.1159/000084941
  • Vitte C., Panaud O. & Quesneville H. 2007. LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8: 1–15. doi: 10.1186/1471-2164-8-218
  • Wallau G.L., Hua-Van A., Capy P., Loreto E.L.S. 2011. The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica 139: 327–338. doi: 10.1007/s10709-011-9552-6
  • Wang J., Staten R., Miller T.A. & Park Y. 2005. Inactivated mariner-like elements (MLE) in pink bollworm, Pectinophora gossypiella. Insect Molecular Biology 14: 547–553. doi: 10.1111/j.1365-2583.2005.00585.x
  • Ward P.N., Holden M.T., Leigh J.A., Lennard N., Bignell A., Barron A., Clark L., Quail M.A., Woodward J., Barell B.G., Egan S.A., Field T.R., Maskell D., Kelhoe M., Dowson C.G., Chanter N., Whatmore A.M., Bentley S. & Parknill J. 2009. Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics 10: 1–17. doi: 10.1186/1471-2164-10-54
  • Wessler S.R., Bureau T.E. & White S.E. 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Current Opinion in Genetics and Development 5: 814–821. doi: 10.1016/0959-437X(95)80016-X
  • Wicker T., Sabot F., Hua-Van A., Bennetzen J., Capy P., Chaloub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., Sanmiguel P. & Schulman A. 2007. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics 8: 973–982. doi: 10.1038/nrg2165
  • Wright S. & Finnegan D. 2001. Genome evolution:sex and the transposable element. Current Biology 11: R296–R298. doi: 10.1016/S0960-9822(01)00168-3
  • Yandell M. & Ence D. 2012. A beginner's guide to eukaryotic genome annotation. Nature Reviews Genetics 13: 329–342. doi: 10.1038/nrg3174
  • Yeadon P.J., Catcheside D.B.A. 1995. Guest: a 98 bp inverted repeat elements in Neurospora crassa. Molecular Genomics and Genetics 247: 105–109.
  • Zerbib D., Prentki P., Gamas P., Freund E., Galas D.J. & Chandler M. 1990. Functional organization of the ends of IS1: specific binding site for an IS1-encoded protein. Molecular Microbiology, 4: 1477–1486. doi: 10.1111/j.1365-2958.1990.tb02058.x
  • Zhang L., Dawson A. & Finnegan D.J. 2001. DNA-binding activity and subunit interaction of the mariner transposase. Nucleic Acids Research 29: 3566–3575. doi: 10.1093/nar/29.17.3566
  • Zuccolo A., Sebastian A., Talag J., Yu Y., Kim H., Collura K., Kudrna D. & Wing R.A. 2007. Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evolutionary Biology 7: 152–167. doi: 10.1186/1471-2148-7-152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.