335
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Increased CO2 availability promotes growth of a tropical coastal diatom assemblage (Goa coast, Arabian Sea, India)

, &
Pages 325-339 | Received 09 Jun 2017, Accepted 27 Jul 2017, Published online: 17 Oct 2017

References

  • Badger M.R., Andrews T.J., Whitney S.M., Ludwig M., Yellowlees D.C., Leggat W. & Price G.D. 1998. The diversity and coevolution of RubisCO, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany 76: 1052–1071. doi: 10.1139/b98-074
  • Beardall J., Stojkovic S. & Larsen S. 2009. Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecology & Diversity 2: 191–205. doi: 10.1080/17550870903271363
  • Biddanda B. & Benner R. 1997. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography 42: 506–518. doi: 10.4319/lo.1997.42.3.0506
  • Biswas H., Cros A., Yadav K., Ramana V.V., Prasad V.R., Acharyya T. & Babu P.R. 2011. The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. Journal of Experimental Marine Biology and Ecology 407: 284–293. doi: 10.1016/j.jembe.2011.06.027
  • Biswas H., Gadi S.D., Ramana V.V., Bharathi M.D., Priyan R.K., Manjari D.T. & Kumar M.D. 2012. Enhanced abundance of tintinnids under elevated CO2 level from coastal Bay of Bengal. Biodiversity and Conservation 21(5): 1309–1326. doi: 10.1007/s10531-011-0209-7
  • Biswas H., Jie J., Li Y., Zhang G., Zhu Z.Y., Wu Y., Zhang G.L., Li Y.W., Liu S.M. & Zhang J. 2015. Response of a natural phytoplankton community from the Qingdao coast (Yellow Sea, China) to variable CO2 levels over a short-term incubation experiment. Current Science 108: 1901–1909.
  • Boyd P.W., Strzepek R., Fu F. & Hutchins D.A. 2010. Environmental control of open-ocean phytoplankton groups: now and in the future. Limnology and Oceanography 55: 1353–1376. doi: 10.4319/lo.2010.55.3.1353
  • Bradshaw A.L., Brewer P.G. 1988. High precision measurements of alkalinity and total carbon dioxide in seawater by potentiometric titration. 2. Measurements on standard solutions. Marine Chemistry 24: 155–162. doi: 10.1016/0304-4203(88)90046-1
  • Chen C.T.A. & Borges A.V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography 56: 578–590. doi: 10.1016/j.dsr2.2009.01.001
  • Clement R., Lignon S., Mansuelle P., Jensen E., Pophillat M., Lebrun R., Denis Y., Puppo C., Maberly S.C. & Gontero B. 2017. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: a proteomic approach. Scientific Reports 7: 42333. doi: 10.1038/srep42333
  • Crawfurd K.J., Raven J.A., Wheeler G.L., Baxter E.J. & Joint I. 2011. The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PloS One 6: e26695. doi: 10.1371/journal.pone.0026695
  • De La Rocha C., Hutchins D.A., Brzezinski M.A. & Zhang Y. 2000. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Marine Ecology Progress Series 195: 71–79. doi: 10.3354/meps195071
  • Devassy V.P. & Goes J.I. 1988. Phytoplankton community structure and succession in a tropical estuarine complex (central west coast of India). Estuarine, Coastal and Shelf Science 27: 671–685. doi: 10.1016/0272-7714(88)90074-1
  • Dickson A.G., Afghan J.D. & Anderson G.C. 2003. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry 80: 185–197. doi: 10.1016/S0304-4203(02)00133-0
  • Doney S.C., Fabry V.J., Feely R.A. & Kleypas J.A. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192. doi: 10.1146/annurev.marine.010908.163834
  • Falchuk K.H., Fawcett D.W. & Vallee B.L. 1975. Role of zinc in cell division of Euglena gracilis. Journal of Cell Science 17: 57–78.
  • Franklin J. 1998. Plant growth chamber handbook. (Iowa Agriculture and Home Economics Experiment Station Special Report No. 99 (SR-99) and North Central Regional Research Publication No. 340.). (Ed. by R.W. Langhans & T.W. Tibbits) Iowa State University, Ames, IA, 1997. New Phytologist, 138: 743–750.
  • Gao K. & Campbell D.A. 2014. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Functional Plant Biology 41: 449–459. doi: 10.1071/FP13247
  • Grasshoff K., Kremling K. & Ehrhardt M. 1999. In: Methods of seawater analysis (Ed. by K. Grasshoff, K. Kremling & M. Ehrhardt) John Wiley & Sons, Weinheim.
  • Hama T., Inoue T., Suzuki R., Kashiwazaki H., Wada S., Sasano D., Kosugi N. & Ishii M. 2016. Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions. Journal of Oceanography 72: 207–223. doi: 10.1007/s10872-015-0322-4
  • Hare C.E., Leblanc K., DiTullio G.R., Kudela R.M., Zhang Y., Lee P.A., Riseman S. & Hutchins D.A. 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series 352: 9–16. doi: 10.3354/meps07182
  • Hasle G. R. & Syvertsen E. E. 1997. Marine diatoms. In: Identifying marine phytoplankton. (Ed. by C.R. Tomas), pp. 5–385. Academic Press, Inc., San Diego, CA.
  • Hedge J. E. & Hofreite, B. T. 1962. In: Carbohydrate chemistry 17 (Ed. by R.L. Whistler & J.N. Be Miller). Academic press, New York.
  • Hennon G.M., Ashworth J., Groussman R.D., Berthiaume C., Morales R.L., Baliga N.S., Orellana M.V. & Armbrust E.V. 2015. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nature Climate Change 5: 761–765. doi: 10.1038/nclimate2683
  • Hervé V., Derr J., Douady S., Quinet M., Moisan L., Lopez P.J. & Browman H. 2012. Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS One 7: e46722. doi: 10.1371/journal.pone.0046722
  • Hinga K.R. 2002. Effects of pH on coastal marine phytoplankton. Marine Ecology Progress Series 238: 281–300. doi: 10.3354/meps238281
  • Hopkinson B.M., Dupont C.L., Allen A.E. & Morel F.M. 2011. Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences 108: 3830–3837. doi: 10.1073/pnas.1018062108
  • Janse I., Van Rijssel M., Gottschal J.C., Lancelot C. & Gieskes W.W. 1996. Carbohydrates in the North Sea during spring blooms of phaeocystis: a specific fingerprint. Aquatic Microbial Ecology 10: 97–103. doi: 10.3354/ame010097
  • Jerlov N.G. 1977. Classification of sea water in terms of quanta irradiance. ICES Journal of Marine Science 37: 281–287. doi: 10.1093/icesjms/37.3.281
  • Khairy H.M., Shaltout N.A., El-Naggar M.F. & El-Naggar N.A. 2014. Impact of elevated CO2 concentrations on the growth and ultrastructure of non-calcifying marine diatom (Chaetoceros gracilis F. Schütt). The Egyptian Journal of Aquatic Research 40: 243–250. doi: 10.1016/j.ejar.2014.08.002
  • Körtzinger A., Duinker J.C. & Mintrop L. 1997. Strong CO2 emissions from the Arabian Sea during south-west monsoon. Geophysical Research Letters 24: 1763–1766. doi: 10.1029/97GL01775
  • Lane T.W., Morel F.M.M. 2000. A biological function for cadmium in marine diatoms. Proceedings of National Academy of Science USA 97: 4627–4631. doi: 10.1073/pnas.090091397
  • Li G. & Campbell D.A. 2013. Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. PLoS One 8(1): e55562. doi: 10.1371/journal.pone.0055562
  • Li W., Gao K. & Beardall J. 2015. Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum. Biogeosciences (online) 12: 2383–2393. doi: 10.5194/bg-12-2383-2015
  • Li F., Wu Y., Hutchins D.A., Fu F. & Gao K. 2016. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations. Biogeosciences (online) 13: 6247–6259. doi: 10.5194/bg-13-6247-2016
  • Li F., Beardall J., Collins S. & Gao K. 2017. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Global Change Biology 23: 127–137. doi: 10.1111/gcb.13501
  • Liu F.J., Li S.X., Huang B.Q., Zheng F.Y. & Huang X.G. 2016. Effect of excessive CO2 on physiological functions in coastal diatom. Nature Scientific Reports 6: 21694. doi: 10.1038/srep21694
  • Lowry O. H., Rosebrough N. J., Farr A. L. & Randall R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.
  • Mejía L.M., Isensee K., Méndez-Vicente A., Pisonero J., Shimizu N., González C., Monteleone B. & Stoll H. 2013. B content and Si/C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii): relationship to seawater pH and diatom carbon acquisition. Geochimica et Cosmochimica Acta 123: 322–337. doi: 10.1016/j.gca.2013.06.011
  • Moore B.D., Cheng S.H., Sims D. & Seemann J.R. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell & Environment 22: 567–582. doi: 10.1046/j.1365-3040.1999.00432.x
  • Morel F.M., Reinfelder J.R., Roberts S.B., Chamberlain C.P., Lee J.G. & Yee D. 1994. Zinc and carbon co-limitation of marine-phytoplankton. Nature 369(6483): 740–742. doi: 10.1038/369740a0
  • Moroney J.V., Bartlett S.G. & Samuelsson G. 2001. Carbonic anhydrases in plants and algae. Plant, Cell & Environment 24: 141–153. doi: 10.1111/j.1365-3040.2001.00669.x
  • Naqvi S.W.A., Noronha R.J., Somasundar K. & Sen Gupta R. 1990. Seasonal changes in the denitrification regime of the Arabian Sea. Deep Sea Research Part A. Oceanographic Research Papers 37: 593–611. doi: 10.1016/0198-0149(90)90092-A
  • Paasche, E. 1973. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Marine Biology 19: 117–126. doi: 10.1007/BF00353582
  • Passow, U. & Carlson, C.A. 2012. The biological pump in a high CO2 world. Marine Ecology Progress Series 470: 249–271. doi: 10.3354/meps09985
  • Paulson C.A. & Simpson J.J. 1977. Irradiance measurements in the upper ocean. Journal of Physical Oceanography 7: 952–956. doi: 10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2
  • Pierrot D.E., Lewis E. & Wallace D.W.R. 2006. MS Excel program developed for CO2 system calculations. Available from: http://cdiac.ornl.gov/ftp/co2sys [ Accessed 12 July 2013].
  • Raven J.A. & Beardall J. 2016. The ins and outs of CO2. Journal of Experimental Botany 67: 1–13. doi: 10.1093/jxb/erv451
  • Raven, J.A. & Johnston, A.M. 1991. Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnology and Oceanography 36: 1701–1714. doi: 10.4319/lo.1991.36.8.1701
  • Raven J.A., Beardall J. & Giordano M. 2014. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research 121: 111–124. doi: 10.1007/s11120-013-9962-7
  • Raven J.A., Beardall J. & Sánchez-Baracaldo P. 2017. The possible evolution, and future, of CO2-concentrating mechanisms. Journal of Experimental Botany. 68: 3701–3716. doi: 10.1093/jxb/erx110
  • Reinfelder, J.R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review in Marine Science 3: 291–315. doi: 10.1146/annurev-marine-120709-142720
  • Rossoll D., Sommer U. & Winder M. 2013. Community interactions dampen acidification effects in a coastal plankton system. Marine Ecology Progress Series 486: 37–46. doi: 10.3354/meps10352
  • Rost B., Zondervan I. & Wolf-Gladrow D. 2008. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Marine Ecology Progress Series 373: 227–237. doi: 10.3354/meps07776
  • Sabine C.L., Feely R. A., Gruber N., Key R.M., Lee K., Bullister J. L., Wanninkhof R., Wong C., Wallace D.W., Tilbrook B. & Millero F.J. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371. doi: 10.1126/science.1097403
  • Schippers P., Lurling M. & Scheffer M. 2004. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7: 446–451. doi: 10.1111/j.1461-0248.2004.00597.x
  • Schulz K. G., Bach L. T., Bellerby R. G. J., Bermúdez R., Büdenbender J., Boxhammer T., Czerny J., Engel A., Ludwig A., Meyerhöfer M., Larsen A., Paul A. J., Aswat M. & Riebesell U. 2017. Phytoplankton bloom at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Frontier in Marine Science 4(64): 1–18.
  • Strickland J.D. & Parsons T.R. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa.
  • Sunda W. G., Huntsman S. A. 2005. Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnology Oceanography 50: 1181–1192. doi: 10.4319/lo.2005.50.4.1181
  • Thornton, D.C. 2009. Effect of low pH on carbohydrate production by a marine planktonic diatom (Chaetoceros muelleri). International Journal of Ecology 10590: 4.
  • Tortell P.D., DiTullio G.R., Sigman D.M. & Morel F.M. 2002. CO2 effects on taxonomic composition and nutrient utilization in an equatorial pacific phytoplankton assemblage. Marine Ecology Progress Series 236: 37–43. doi: 10.3354/meps236037
  • Tortell P.D., Payne C., Gueguen C., Li Y., Strzepek R.F., Boyd P.W. & Rost B. 2008. Inorganic carbon uptake by Southern Ocean phytoplankton. Limnology and Oceanography 53: 1266–1278. doi: 10.4319/lo.2008.53.4.1266
  • Wang N. & Nobel P.S. 1996. Doubling the CO2 concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica. Plant Physiology 110: 893–902. doi: 10.1104/pp.110.3.893
  • Winkler, L.W. 1888. Die Bestimmung des im Wasser gelösten Sauerstoffes. Berichte der Deutschen Chemischen Gesellschaft 21: 2843–2854. doi: 10.1002/cber.188802102122
  • Yang, G. & Gao, K. 2012. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Marine Environmental Research 79: 142–151. doi: 10.1016/j.marenvres.2012.06.002
  • Young, J.N. & Morel, F.M. 2015. Biological oceanography: the CO2 switch in diatoms. Nature Climate Change 5: 722–723. doi: 10.1038/nclimate2691
  • Young J.N., Kranz S.A., Goldman J.A., Tortell P.D. & Morel F.M. 2015. Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Marine Ecology Progress Series 532: 13–28. doi: 10.3354/meps11336
  • Young J.N., Heureux A., Sharwood R.E., Rickaby R.E., Morel F.M. & Whitney S.M. 2016. Large variation in the RubisCO kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany 67: 3445–3456. doi: 10.1093/jxb/erw163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.