255
Views
0
CrossRef citations to date
0
Altmetric
Articles

Physiological and biochemical responses of Thalassiosira punctigera to nitrate limitation

, & ORCID Icon
Pages 135-143 | Received 08 Jan 2018, Accepted 01 Jun 2018, Published online: 07 Aug 2018

References

  • Allen J.T., Brown L., Sanders R., Moore C.M., Mustard A., Fielding S., Lucas M., Rixen M., Savidge G., Henson S. & Mayor D. 2005. Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature 437: 728–732. doi: 10.1038/nature03948
  • Augueres A.S. & Loreau M. 2015. Regulation of Redfield ratios in the deep ocean. Global Biogeochemical Cycles 29: 254–266. doi: 10.1002/2014GB005066
  • Behrenfeld M.J. 2014. Climate-mediated dance of the plankton. Nature Climate Change 4: 880–887. doi:10.1038/Nclimate2349.
  • Berges J.A., Charlebois D.O., Mauzerall D.C. & Falkowski P.G. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiology 110: 689–696. doi: 10.1104/pp.110.2.689
  • Biddanda B. & Benner R. 1997. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography 42: 506–518. doi: 10.4319/lo.1997.42.3.0506
  • Brzezinski M.A. & Nelson D.M. 1995. The annual silica cycle in the Sargasso Sea near Bermuda. Deep Sea Research Part I: Oceanographic Research Papers 42: 1215–1237. doi: 10.1016/0967-0637(95)93592-3
  • Carpenter E.J. & Guillard R.R.L. 1971. Intraspecific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52: 183–185. doi: 10.2307/1934753
  • Claquin P., Martin-Jézéquel V., Kromkamp J., Veldhuis M. & Kraay G. 2002. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen and phosphorus control. Journal of Phycology 38: 922–930. doi: 10.1046/j.1529-8817.2002.t01-1-01220.x
  • Coma R., Ribes M., Serrano E., Jimenez E., Salat J. & Pascual J. 2009. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proceedings of the National Academy of Sciences 106: 6176–6181. doi: 10.1073/pnas.0805801106
  • Dutkiewicz S., Follows M.J. & Bragg J.G. 2009. Modeling the coupling of ocean ecology and biogeochemistry. Global Biogeochemical Cycles 23. doi:10.1029/2008gb003405.
  • Eilers P.H.C. & Peeters J.C.H. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42: 199–215. doi: 10.1016/0304-3800(88)90057-9
  • Engel A. 2000. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research 22: 485–497. doi: 10.1093/plankt/22.3.485
  • Engel A., Goldthwait S., Passow U. & Alldredge A. 2002. Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnology and Oceanography 47: 753–761. doi: 10.4319/lo.2002.47.3.0753
  • Falkowski P.G. 2012. Ocean science: The power of plankton. Nature 483:S17–S20. doi: 10.1038/483S17a
  • Falkowski P.G., Barber R.T. & Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281: 200–206. doi: 10.1126/science.281.5374.200
  • Falkowski P.G. & Raven J.A. 2007. An introduction of photosynthesis in aquatic system. In: Aquatic photosynthesis, 2 edn., p. 1. Princeton: Princeton University Press.
  • Firme G.F., Rue E.L., Weeks D.A., Bruland K.W. & Hutchins D.A. 2003. Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry. Global Biogeochemical Cycles 17: 1–13. doi: 10.1029/2001GB001824
  • Flynn K.J. & Martin-Jézéquel V. 2000. Modelling Si–N-limited growth of diatoms. Journal of Plankton Research 22: 447–472. doi: 10.1093/plankt/22.3.447
  • Geider R. & La Roche J.L. 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 1–17. doi: 10.1017/S0967026201003456
  • Goldman J.C., McCarthy J.J. & Peavey D.G. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215. doi: 10.1038/279210a0
  • Goldman J.C., Hansell D.A. & Dennett M.R. 1992. Chemical characterization of three large oceanic diatoms: potential impact on water column chemistry. Marine Ecology Progress Series 88: 257–270. doi: 10.3354/meps088257
  • Griffiths M.J., Van Hille R.P. & Harrison S.T.L. 2012. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology 24: 989–1001. doi: 10.1007/s10811-011-9723-y
  • Jetten M.S. 2008. The microbial nitrogen cycle. Environmental Microbiology 10: 2903–2909. doi: 10.1111/j.1462-2920.2008.01786.x
  • Jiang Y., Yoshida T. & Quigg A. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiology and Biochemistry 54: 70–77. doi: 10.1016/j.plaphy.2012.02.012
  • Jin P., Gao K. & Beardall J. 2013. Evolutionary responses of a Coccolithophorid Gephyrocapsa Oceanica to ocean acidification. Evolution 67: 1869–1878. doi: 10.1111/evo.12112
  • John E.H. & Davidson K. 2001. Prey selectivity and the influence of prey carbon:nitrogen ratio on microflagellate grazing. Journal of Experimental Marine Biology and Ecology 260:93–111. doi: 10.1016/S0022-0981(01)00244-1
  • Laws E.A. 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Research Part A. Oceanographic Research Papers 38: 143–167. doi: 10.1016/0198-0149(91)90059-O
  • Levitus S., Conkright M.E., Reid J.L., Najjar R.G. & Mantyla A. 1993. Distribution of nitrate, phosphate and silicate in the world oceans. Progress in Oceanography 31: 245–273. doi: 10.1016/0079-6611(93)90003-V
  • Levitus S., Antonov J.I., Boyer T.P. & Stephens C. 2000. Warming of the world ocean. Science 287: 2225–2229. doi: 10.1126/science.287.5461.2225
  • Li G. & Campbell D.A. 2017. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Photosynthesis Research 131: 93–103. doi: 10.1007/s11120-016-0301-7
  • Li W., Gao K. & Beardall J. 2012. Interactive effects of ocean acidification and nitrogen-limitation on the diatom phaeodactylum tricornutum. PLoS One 7: e51590. doi:doi: 10.1371/journal.pone.0051590.
  • Li W., Gao K. & Beardall J. 2015. Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum. Biogeosciences (online) 12: 2383–2393. doi: 10.5194/bg-12-2383-2015
  • Litchman E., Klausmeier C.A., Schofield O.M. & Falkowski P.G. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181. doi: 10.1111/j.1461-0248.2007.01117.x
  • Liu W.H., Huang Z.W., Li P., Xia J.F. & Chen B. 2012. Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. Journal of Experimental Marine Biology and Ecology 418-419: 24–29. doi: 10.1016/j.jembe.2012.03.005
  • Mei Z.P., Finkel Z.V. & Irwin A.J. 2009. Light and nutrient availability affect the size-scaling of growth in phytoplankton. Journal of Theoretical Biology 259: 582–588. doi: 10.1016/j.jtbi.2009.04.018
  • Monod J. 1950. The technique, theory and applications of continuous culture. Annales de I'Institut Pasteur 79: 184–204.
  • Moore C.M., Mills M.M., Langlois R., Milne A., Achterberg E.P., La Roche J. & Geider R.J. 2008. Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical north Atlantic Ocean. Limnology and Oceanography 53: 291–305. doi: 10.4319/lo.2008.53.1.0291
  • Morel F.M., Rueter J., Anderson D.M. & Guillard R. 1979. Aquil: a chemically defined phytoplankton culture medium for trace metal studies. Journal of Phycology 15: 135–141. doi: 10.1111/j.0022-3646.1979.00135.x
  • Mutshinda C.M., Finkel Z.V., Widdicombe C.E. & Irwin A.J. 2017. Phytoplankton traits from long-term oceanographic time-series. Marine Ecology Progress Series 576: 11–25. doi:doi: 10.3354/meps12220.
  • Nelson D.M., Treguer P., Brzezinski M.A., Leynaert A. & Queguiner B. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles 9: 359–372. doi: 10.1029/95GB01070
  • Palter J. 2015. Storms bring ocean nutrients to light. Nature 525: 460–461. doi: 10.1038/525460a
  • Ragueneau O., Tréguer P., Leynaert A., Anderson R., Brzezinski M., Demaster D., Dugdale R., Dymond J., Fischer G. & Francois R. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change 26: 317–365. doi: 10.1016/S0921-8181(00)00052-7
  • Redfield A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46:205–221.
  • Ritchie R.J. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89: 27–41. doi: 10.1007/s11120-006-9065-9
  • Rykaczewski R.R. & Dunne J.P. 2010. Enhanced nutrient supply to the California current ecosystem with global warming and increased stratification in an earth system model. Geophysical Research Letters 37: 5. doi:doi: 10.1029/2010gl045019.
  • Sarthou G., Timmermans K.R., Blain S. & Treguer P. 2005. Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research 53: 25–42. doi: 10.1016/j.seares.2004.01.007
  • Schartau M., Engel A., Schröter J., Thoms S., Völker C. & Wolf-Gladrow D. 2007. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences (online) 4: 433–454. doi:doi: 10.5194/bg-4-433-2007.
  • Sigmon D.E., Nelson D.M. & Brzezinski M.A. 2002. The Si cycle in the pacific sector of the Southern Ocean: seasonal diatom production in the surface layer and export to the deep sea. Deep Sea Research Part II: Topical Studies in Oceanography 49: 1747–1763. doi: 10.1016/S0967-0645(02)00010-3
  • Siuda A.N. & Dam H.G. 2010. Effects of omnivory and predator-prey elemental stoichiometry on planktonic trophic interactions. Limnology and Oceanography 55:2107–2116. doi: 10.4319/lo.2010.55.5.2107
  • Smetacek V. 1999. Diatoms and the ocean carbon cycle. Protist 150: 25–32. doi: 10.1016/S1434-4610(99)70006-4
  • Sterner R.W., Clasen J., Lampert W. & Weisse T. 1998. Carbon:phosphorus stoichiometry and food chain production. Ecology Letters 1: 146–150. doi: 10.1046/j.1461-0248.1998.00030.x
  • Sun H.F., Wang H.W. & Yuan C.Y. 2014. Optimization of zinc-cadmium reduction method for determination of nitrate in seawater. In: Environmental engineering, Pts 1-4, vol 864-867. (Ed. by H. Li, Q. Xu & H. Ge), pp. 1004–1007. Advanced Materials Research. Trans Tech Publications Ltd, Stafa-Zurich.
  • Talarmin A., Lomas M.W., Bozec Y., Savoye N., Frigstad H., Karl D.M. & Martiny A.C. 2016. Seasonal and long-term changes in elemental concentrations and ratios of marine particulate organic matter. Global Biogeochemical Cycles 30: 1699–1711. doi: 10.1002/2016GB005409
  • Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400: 525–531. doi: 10.1038/22941
  • Vitousek P. & Howarth R. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115. doi: 10.1007/BF00002772
  • Wang J.H., Tang H.J., Yang R.J. & Wang X.L. 2008. The effects of nitrate and phosphate on the growth and nitrate reductase activity of Skeletonema costatum. Marine Sciences 32: 64–68.
  • Woodland R.J., Thomson J.R., Mac Nally R., Reich P., Evrard V., Wary F.Y., Walker J.P. & Cook P.L.M. 2015. Nitrogen loads explain primary productivity in estuaries at the ecosystem scale. Limnology and Oceanography 60: 1751–1762. doi: 10.1002/lno.10136
  • Wu Y., Campbell D.A., Irwin A.J., Suggett D.J. & Finkel Z.V. 2014a. Ocean acidification enhances the growth rate of larger diatoms. Limnology and Oceanography 59: 1027–1034. doi: 10.4319/lo.2014.59.3.1027
  • Wu Y., Jeans J., Suggett D., Finkel Z. & Campbell D.A. 2014b. Large centric diatoms allocate more cellular nitrogen to photosynthesis to counter slower RUBISCO turnover rates. Frontiers in Marine Science 1: 68. doi:doi: 10.3389/fmars.2014.00068.
  • Xiao W., Liu X., Irwin A.J., Laws E., Wang L., Chen B., Zeng Y. & Huang B. 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research 128: 206–216. doi:10.1016/j.watres.2017.10.051.
  • Yool A. & Tyrrell T. 2003. Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochemical Cycles 17: 1–21. doi: 10.1029/2002GB002018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.