1,515
Views
8
CrossRef citations to date
0
Altmetric
Articles

Temporal changes in size distributions of the Southern Ocean diatom Fragilariopsis kerguelensis through high-throughput microscopy of sediment trap samples

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 133-147 | Received 23 Jul 2018, Accepted 29 Apr 2019, Published online: 19 Aug 2019

References

  • Abelmann A., Gersonde R., Cortese G., Kuhn G. & Smetacek V. 2006. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography 21: PA1013. doi: 10.1029/2005pa001199
  • Assmy P. 2004. Temporal development and vertical distribution of major components of the plankton assemblage during an iron fertilization experiment in the Antarctic Polar Frontal Zone. Ph.D. Thesis, Universität Bremen, Bremen.
  • Assmy P., Henjes J., Smetacek V. & Montresor M. 2006. Auxospore formation by the silica-sinking, oceanic diatom Fragilariopsis kerguelensis (Bacillariophyceae). Journal of Phycology 42: 1002–1006. doi: 10.1111/j.1529-8817.2006.00260.x
  • Assmy P., Smetacek V., Montresor M., Klaas C., Henjes J., Strass V.H., Arrieta J.M., Bathmann U., Berg G.M., Breitbarth E., Cisewski B., Friedrichs L., Fuchs N., Herndl G.J., Jansen S., Krägefsky S., Latasa M., Peeken I., Röttgers R., Scharek R., Schüller S.E., Steigenberger S., Webb A. & Wolf-Gladrow D. 2013. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proceedings of the National Academy of Sciences of the United States of America 110: 20633–20638. doi: 10.1073/pnas.1309345110
  • Bellinger E.G. 1977. Seasonal size changes in certain diatoms and their possible significance. British Phycological Journal 12: 233–239. doi: 10.1080/00071617700650251
  • Benaglia T., Chauveau D., Hunter D.R. & Young D.S. 2009. Mixtools: an R package for analyzing finite mixture models. Journal of Statistical Software 32: 1–29. doi: 10.18637/jss.v032.i06
  • Beszteri B., Allen C., Almandoz G.O., Armand L., Barcena M.Á., Cantzler H., Crosta X., Esper O., Jordan R.W., Kauer G., Klaas C., Kloster M., Leventer A., Pike J. & Rigual Hernández A.S. 2018a. Quantitative comparison of taxa and taxon concepts in the diatom genus Fragilariopsis: a case study on using slide scanning, multi-expert image annotation and image analysis in taxonomy. Journal of Phycology 54: 703–719. doi: 10.1111/jpy.12767
  • Beszteri S., Thoms S., Benes V., Harms L. & Trimborn S. 2018b. The response of three Southern Ocean phytoplankton species to ocean acidification and light availability: a transcriptomic study. Protist 169: 958–975. doi: 10.1016/j.protis.2018.08.003
  • Bishop I.W. & Spaulding S.A. 2017. Life cycle size dynamics in Didymosphenia geminata (Bacillariophyceae). Journal of Phycology 53: 652–663. doi: 10.1111/jpy.12528
  • Bowie A.R., Lannuzel D., Remenyi T.A., Wagener T., Lam P.J., Boyd P.W., Guieu C., Townsend A.T. & Trull T.W. 2009. Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the Subantarctic Zone by the summertime supply. Global Biogeochemical Cycles 23: GB4034. doi: 10.1029/2009GB003500
  • Bowie A.R., Brian Griffiths F., Dehairs F. & Trull T.W. 2011. Oceanography of the Subantarctic and Polar Frontal Zones south of Australia during summer: setting for the SAZ-SENSE study. Deep Sea Research Part II: Topical Studies in Oceanography 58: 2059–2070. doi: 10.1016/j.dsr2.2011.05.033
  • Card V.M. & Carra M. 2013. Investigation of evolutionary effects on the relative frequency of sexual reproduction in freshwater diatoms. Phytotaxa 127: 183–189. doi: 10.11646/phytotaxa.127.1.17
  • Closset I., Cardinal D., Bray S.G., Thil F., Djouraev I., Rigual-Hernández A.S. & Trull T.W. 2015. Seasonal variations, origin, and fate of settling diatoms in the Southern Ocean tracked by silicon isotope records in deep sediment traps. Global Biogeochemical Cycles 29: 1495–1510. doi: 10.1002/2015GB005180
  • Cortese G. & Gersonde R. 2007. Morphometric variability in the diatom Fragilariopsis kerguelensis: implications for Southern Ocean paleoceanography. Earth and Planetary Science Letters 257: 526–544. doi: 10.1016/j.epsl.2007.03.021
  • Cortese G. & Gersonde R. 2008. Plio/pleistocene changes in the main biogenic silica carrier in the Southern Ocean, Atlantic sector. Marine Geology 252: 100–110. doi: 10.1016/j.margeo.2008.03.015
  • Cortese G., Gersonde R., Maschner K. & Medley P. 2012. Glacial-interglacial size variability in the diatom Fragilariopsis kerguelensis: possible iron/dust controls? Paleoceanography 27: PA1208. doi: 10.1029/2011pa002187
  • Crawford R.M. 1995. The role of sex in the sedimentation of a marine diatom bloom. Limnology and Oceanography 40: 200–204. doi: 10.4319/lo.1995.40.1.0200
  • Crawford R.M., Hinz F. & Rynearson T. 1997. Spatial and temporal distribution of assemblages of the diatom Corethron criophilum in the Polar Frontal region of the south Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography 44: 479–496. doi: 10.1016/S0967-0645(96)00079-3
  • Crosta X. 2009. Holocene size variations in two diatom species off east Antarctica: productivity vs environmental conditions. Deep Sea Research Part I: Oceanographic Research Papers 56: 1983–1993. doi: 10.1016/j.dsr.2009.06.009
  • D’Alelio D., d’Alcala M.R., Dubroca L., Sarno D., Zingone A. & Montresor M. 2010. The time for sex: a biennial life cycle in a marine planktonic diatom. Limnology and Oceanography 55: 106–114. doi: 10.4319/lo.2010.55.1.0106
  • DeBaar H.J.W., VanLeeuwe M.A., Scharek R., Goeyens L., Bakker K.M.J. & Fritsche P. 1997. Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A. C. Redfield) of the Antarctic Ocean. Deep-Sea Research Part II-Topical Studies in Oceanography 44: 229–260. doi: 10.1016/S0967-0645(96)00102-6
  • Edlund M.B. & Stoermer E.F. 1997. Ecological, evolutionary, and systematic significance of diatom life histories. Journal of Phycology 33: 897–918. doi: 10.1111/j.0022-3646.1997.00897.x
  • Eriksen R., Trull T.W., Davies D., Jansen P., Davidson A.T., Westwood K. & van den Enden R. 2018. Seasonal succession of phytoplankton community structure from autonomous sampling at the Australian Southern Ocean Time Series (SOTS) observatory. Marine Ecology Progress Series 589: 13–31. doi: 10.3354/meps12420
  • Esper O., Gersonde R. & Kadagies N. 2010. Diatom distribution in southeastern Pacific surface sediments and their relationship to modern environmental variables. Palaeogeography Palaeoclimatology Palaeoecology 287: 1–27. doi: 10.1016/j.palaeo.2009.12.006
  • Fenner J., Schrader H. & Wienigk H. 1976. Diatom phytoplankton studies in the southern Pacific Ocean, composition and correlation to the Antarctic Convergence and its paleoecological significance. Initial Reports of the Deep Sea Drilling Project 35: 757–813. doi: 10.2973/dsdp.proc.35.app3.1976
  • Fuchs N., Scalco E., Kooistra W.H.C.F., Assmy P. & Montresor M. 2013. Genetic characterization and life cycle of the diatom Fragilariopsis kerguelensis. European Journal of Phycology 48: 411–426. doi: 10.1080/09670262.2013.849360
  • Geitler L. 1973. Auxosporenbildung und Systematik bei pennaten Diatomeen und die Cytologie von Cocconeis-Sippen. Österreichische Botanische Zeitschrift 122: 299–321. doi: 10.1007/BF01376232
  • Hamm C.E., Merkel R., Springer O., Jurkojc P., Maier C., Prechtel K. & Smetacek V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841–843. doi: 10.1038/nature01416
  • Hart T.J. 1942. Phytoplankton periodicity in Antarctic surface waters. Discovery Reports 8: 261–356.
  • Hoffmann L.J., Peeken I. & Lochte K. 2007. Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences 4: 569–579. doi: 10.5194/bg-4-569-2007
  • Hofmann E.E. 1985. The large-scale horizontal structure of the Antarctic Circumpolar Current from FGGE drifters. Journal of Geophysical Research: Oceans 90: 7087–7097. doi: 10.1029/JC090iC04p07087
  • Jewson D. 1992a. Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions of the Royal Society of London B 336: 191–213. doi: 10.1098/rstb.1992.0056
  • Jewson D.H. 1992b. Life cycle of a Stephanodiscus sp. (Bacillariophyta). Journal of Phycology 28: 856–866. doi: 10.1111/j.0022-3646.1992.00856.x
  • Jewson D.H. & Granin N.G. 2015. Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. European Journal of Phycology 50: 1–19. doi: 10.1080/09670262.2014.979450
  • Kloster M., Kauer G. & Beszteri B. 2014. SHERPA: An image segmentation and outline feature extraction tool for diatoms and other objects. BMC Bioinformatics 15: 218. doi: 10.1186/1471-2105-15-218
  • Kloster M., Esper O., Kauer G. & Beszteri B. 2017. Large-scale permanent slide imaging and image analysis for diatom morphometrics. Applied Sciences 7: 330. doi: 10.3390/app7040330
  • Kloster M., Kauer G., Esper O., Fuchs N. & Beszteri B. 2018. Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: high-throughput measurements show second morphotype occurring during glacials. Marine Micropaleontology 143: 70–79. doi: 10.1016/j.marmicro.2018.07.002
  • Lewis Jr. W.M. 1984. The diatom sex clock and its evolutionary significance. The American Naturalist 123: 73–80. doi: 10.1086/284187
  • Locarnini R.A., Mishonov A.V., Antonov J.I., Boyer T.P., Garcia H.E., Baranova O.K., Zweng M.M., Paver C.R., Reagan J.R. & Johnson D.R. 2013. World Ocean Atlas 2013. Volume 1, Temperature. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp.
  • Lundholm N., Daugbjerg N. & Moestrup Ø. 2002. Phylogeny of the Bacillariaceae with emphasis on the genus Pseudo-nitzschia (Bacillariophyceae) based on partial LSU rDNA. European Journal of Phycology 37: 115–134. doi: 10.1017/S096702620100347X
  • Martin J.H., Fitzwater S.E. & Gordon R.M. 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles 4: 5–12. doi: 10.1029/GB004i001p00005
  • Meyer M.A. & El-Sayed S.Z. 1983. Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biology 1: 193–197. doi: 10.1007/bf00443187
  • Moore J.K., Abbott M.R. & Richman J.G. 1999. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. Journal of Geophysical Research: Oceans 104: 3059–3073. doi: 10.1029/1998JC900032
  • Orsi A.H., Whitworth III T. & Nowlin Jr W.D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers 42: 641–673. doi: 10.1016/0967-0637(95)00021-W
  • Parslow J.S., Boyd P.W., Rintoul S.R. & Griffiths F.B. 2001. A persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone south of Australia: seasonal progression and implications for phytoplankton-light-nutrient interactions. Journal of Geophysical Research: Oceans 106: 31543–31557. doi: 10.1029/2000JC000322
  • Pinkernell S. & Beszteri B. 2014. Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean. Ecology and Evolution 4: 3147–3161. doi: 10.1002/Ece3.1138
  • Quetin L.B. & Ross R.M. 1985. Feeding by Antarctic krill, Euphausia superba: does size matter? In: Antarctic nutrient cycles and food webs (Ed. by W.R. Siegfried, P.R. Condy & R.M. Laws), pp. 372–377. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org
  • Rigual-Hernández A.S., Trull T.W., Bray S.G., Cortina A. & Armand L.K. 2015. Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal Zones of the Southern Ocean and their role in the biological pump. Biogeosciences Discuss. 12: 8615–8690. doi: 10.5194/bgd-12-8615-2015
  • Rigual-Hernández A.S., Trull T.W., Bray S.G. & Armand L.K. 2016. The fate of diatom valves in the Subantarctic and Polar Frontal Zones of the Southern Ocean: sediment trap versus surface sediment assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 457: 129–143. doi: 10.1016/j.palaeo.2016.06.004
  • Roselli L. & Basset A. 2015. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level. Plos One 10: e0127193. doi: 10.1371/journal.pone.0127193
  • Round F.E., Crawford R.M. & Mann D.G. 1990. The diatoms. The biology and morphology of the genera. Cambridge University Press, Cambridge. 747 pp.
  • Schwarz R., Wolf M. & Müller T. 2009. A probabilistic model of cell size reduction in Pseudo-nitzschia delicatissima (Bacillariophyta). Journal of Theoretical Biology 258: 316–322. doi: 10.1016/j.jtbi.2009.02.002
  • Shukla S.K. & Crosta X. 2017. Fragilariopsis kerguelensis size variability from the Indian subtropical Southern Ocean over the last 42 000 years. Antarctic Science 29: 139–146. doi: 10.1017/S095410201600050X
  • Shukla S.K. & Romero O.E. 2018. Glacial valve size variation of the Southern Ocean diatom Fragilariopsis kerguelensis preserved in the Benguela upwelling system, southeastern Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 499: 112–122. doi: 10.1016/j.palaeo.2018.03.023
  • Shukla S.K., Crosta X., Cortese G. & Nayak G.N. 2013. Climate mediated size variability of diatom Fragilariopsis kerguelensis in the Southern Ocean. Quaternary Science Reviews 69: 49–58. doi: 10.1016/j.quascirev.2013.03.005
  • Siegel D. & Deuser W. 1997. Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps. Deep Sea Research Part I: Oceanographic Research Papers 44: 1519–1541. doi: 10.1016/S0967-0637(97)00028-9
  • Siegel D.A., Fields E. & Buesseler K.O. 2008. A bottom-up view of the biological pump: modeling source funnels above ocean sediment traps. Deep Sea Research Part I: Oceanographic Research Papers 55: 108–127. doi: 10.1016/j.dsr.2007.10.006
  • Smetacek V., Klaas C., Menden-Deuer S. & Rynearson T.A. 2002. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Sea Research Part II: Topical Studies in Oceanography 49: 3835–3848. doi: 10.1016/S0967-0645(02)00113-3
  • Smetacek V., Assmy P. & Henjes J. 2004. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Science 16: 541–558. doi: 10.1017/s0954102004002317
  • Spaulding S.A., Jewson D.H., Bixby R.J., Nelson H. & McKnight D.M. 2012. Automated measurement of diatom size. Limnology and Oceanography: Methods 10: 882–890. doi: 10.4319/lom.2012.10.882
  • Stoermer E.F., Emmert G. & Schelske C.L. 1989. Morphological variation of Stephanodiscus niagarae Ehrenb.(Bacillariophyta) in a Lake Ontario sediment core. Journal of Paleolimnology 2: 227–236. doi: 10.1007/BF00202048
  • Timmermans K.R. & Van Der Wagt B. 2010. Variability in cell size, nutrient depletion, and growth rates of the Southern Ocean diatom Fragilariopsis kerguelensis (Bacillariophyceae) after prolonged iron limitation. Journal of Phycology 46: 497–506. doi: 10.1111/j.1529-8817.2010.00827.x
  • Tréguer P.J. 2014. The Southern Ocean silica cycle. Comptes Rendus Geoscience 346: 279–286. doi: 10.1016/j.crte.2014.07.003
  • Tréguer P.J. & De La Rocha C.L. 2013. The world ocean silica cycle. Annual Review of Marine Science 5: 477–501. doi: 10.1146/annurev-marine-121211-172346
  • Trimborn S., Brenneis T., Sweet E. & Rost B. 2013. Sensitivity of Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition, and species interaction. Limnology and Oceanography 58: 997–1007. doi: 10.4319/lo.2013.58.3.0997
  • Trimborn S., Thoms S., Petrou K., Kranz S.A. & Rost B. 2014. Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: short-term versus acclimation effects. Journal of Experimental Marine Biology and Ecology 451: 44–54. doi: 10.1016/j.jembe.2013.11.001
  • Trimborn S., Thoms S., Brenneis T., Heiden J.P., Beszteri S. & Bischof K. 2017. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis Antarctica. Physiologia Plantarum 160: 155–170. doi: 10.1111/ppl.12539
  • Trull T.W., Bray S.G., Manganini S.J., Honjo S. & François R. 2001a. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia. Journal of Geophysical Research: Oceans 106: 31489–31509. doi: 10.1029/2000JC000308
  • Trull T.W., Rintoul S.R., Hadfield M. & Abraham E.R. 2001b. Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 48: 2439–2466. doi: 10.1016/S0967-0645(01)00003-0
  • Waite A. & Harrison P.J. 1992. Role of sinking and ascent during sexual reproduction in the marine diatom Ditylum brightwellii. Marine Ecology Progress Series 87: 113–122. doi: 10.3354/meps087113
  • Waite A., Fisher A., Thompson P.A. & Harrison P.J. 1997. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Marine Ecology Progress Series 157: 97–108. doi: 10.3354/meps157097
  • Wilken S., Hoffmann B., Hersch N., Kirchgessner N., Dieluweit S., Rubner W., Hoffmann L.J., Merkel R. & Peeken I. 2011. Diatom frustules show increased mechanical strength and altered valve morphology under iron limitation. Limnology and Oceanography 56: 1399–1410. doi: 10.4319/lo.2011.56.4.1399
  • Zielinski U. & Gersonde R. 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeography Palaeoclimatology Palaeoecology 129: 213–250. doi: 10.1016/S0031-0182(96)00130-7