12,657
Views
143
CrossRef citations to date
0
Altmetric
Review Articles

Biofluid biomarkers of traumatic brain injury

, ORCID Icon &
Pages 1195-1203 | Received 03 May 2017, Accepted 17 Jul 2017, Published online: 05 Oct 2017

References

  • Menon DK, Maas AI. Traumatic brain injury in 2014. Progress, failures and new approaches for TBI research. Nat Rev Neurol. 2015;11(2):71–72. doi:10.1038/nrneurol.2014.261.
  • Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, Tsukamoto A, Yamamoto H, Takayama K, Tominaga T. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma. 2011;28(6):1101–19. doi:10.1089/neu.2010.1442.
  • Risdall JE, Menon DK. Traumatic brain injury. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):241–50. doi:10.1098/rstb.2010.0230.
  • Ling H, Hardy J, Zetterberg H. Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci. 2015;66(Pt B):114–22. doi:10.1016/j.mcn.2015.03.012.
  • Nortje J, Menon DK. Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol. 2004;17(6):711–18. doi:10.1097/00019052-200412000-00011.
  • Agoston D, Kamnaksh A. Modeling the neurobehavioral consequences of blast-induced traumatic brain injury spectrum disorder and identifying related biomarkers. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton (Florida): CRC Press; 2015.
  • Ahmed F, Plantman S, Cernak I, Agoston DV. The temporal pattern of changes in serum biomarker levels reveals complex and dynamically changing pathologies after exposure toe a single low intensity blast in mice. Front Neurol. 2015;6:article 114. doi:10.3389/fneur.2015.00114.
  • Newcombe VF, Correia MM, Ledig C, Abate MG, Outtrim JG, Chatfield D, Geeraerts T, Manktelow AE, Garyfallidis E, Pickard JD, et al. Dynamic changes in white matter abnormalities correlate with late improvement and deterioration following TBI: a diffusion tensor imaging study. Neurorehabil Neural Repair. 2016;30(1):49–62. doi:10.1177/1545968315584004.
  • Ott L, Young B, McClain C. The metabolic response to brain injury. JPEN J Parenter Enteral Nutr. 1987;11(5):488–93. doi:10.1177/0148607187011005488.
  • Prins ML, Matsumoto J. Metabolic response of pediatric traumatic brain injury. J Child Neurol. 2016;31(1):28–34. doi:10.1177/0883073814549244.
  • Hill CS, Coleman MP, Menon DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39(5):311–24. doi:10.1016/j.tins.2016.03.002.
  • Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43. doi:10.1016/j.expneurol.2012.01.013.
  • Povlishock JT. Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathology. 1992;2(1):1–12.
  • DeWitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma. 2003;20(9):795–825. doi:10.1089/089771503322385755.
  • Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5(3):1147–60.
  • Finnie JW. Neuroinflammation: beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology. 2013;21(4):309–20. doi:10.1007/s10787-012-0164-2.
  • Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KL, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol. 2011;95(3):352–72. doi:10.1016/j.pneurobio.2011.09.003.
  • Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91. doi:10.1038/nrneurol.2017.13.
  • Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, Agoston D. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis. 2012;33(24):3705–11. doi:10.1002/elps.v33.24.
  • Cernak I, Chapman SM, Hamlin GP, Vink R. Temporal characterisation of pro- and anti-apoptotic mechanisms following diffuse traumatic brain injury in rats. J Clin Neurosci. 2002;9(5):565–72. doi:10.1054/jocn.2002.1132.
  • Hicks R, Soares H, Smith D, McIntosh T. Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol. 1996;91(3):236–46. doi:10.1007/s004010050421.
  • Huang XJ, Glushakova O, Mondello S, Van K, Hayes RL, Lyeth BG. Acute temporal profiles of serum levels of UCH-L1 and GFAP and relationships to neuronal and astroglial pathology following traumatic brain injury in rats. J Neurotrauma. 2015;32(16):1179–89. doi:10.1089/neu.2015.3873.
  • Lescot T, Fulla-Oller L, Po C, Chen XR, Puybasset L, Gillet B, Plotkine M, Meric P, Marchand-Leroux C. Temporal and regional changes after focal traumatic brain injury. J Neurotrauma. 2010;27(1):85–94. doi:10.1089/neu.2009.0982.
  • Sharma R, Laskowitz DT. Biomarkers in traumatic brain injury. Curr Neurol Neurosci Rep. 2012;12(5):560–69. doi:10.1007/s11910-012-0301-8.
  • Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol. 2016;275(Pt 3):334–52. doi:10.1016/j.expneurol.2015.05.004.
  • Zetterberg H, Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol. 2016;12(10):563–74. doi:10.1038/nrneurol.2016.127.
  • Agoston DV, Kamnaksh A. Modeling the neurobehavioral consequences of blast-induced traumatic brain injury spectrum disorder and identifying related biomarkers. In: Kobeissy FH, Editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton (FL): CRC Press/Taylor & Francis(c) 2015 by Taylor & Francis Group, LLC.; 2015.
  • Browne KD, Chen XH, Meaney DF, Smith DH. Mild traumatic brain injury and diffuse axonal injury in swine. J Neurotrauma. 2011;28(9):1747–55. doi:10.1089/neu.2011.1913.
  • Manley GT, Rosenthal G, Lam M, Morabito D, Yan D, Derugin N, Bollen A, Knudson MM, Panter SS. Controlled cortical impact in swine: pathophysiology and biomechanics. J Neurotrauma. 2006;23(2):128–39. doi:10.1089/neu.2006.23.128.
  • Rosenthal G, Morabito D, Cohen M, Roeytenberg A, Derugin N, Panter SS, Knudson MM, Manley G. Use of hemoglobin-based oxygen-carrying solution-201 to improve resuscitation parameters and prevent secondary brain injury in a swine model of traumatic brain injury and hemorrhage: laboratory investigation. J Neurosurg. 2008;108(3):575–87. doi:10.3171/JNS/2008/108/3/0575.
  • Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38. doi:10.1089/neu.2008.0586.
  • Gyorgy A, Ling G, Wingo D, Walker J, Tong L, Parks S, Januszkiewicz A, Baumann R, Agoston D. Time-dependent changes in serum biomarker levels after blast traumatic brain injury. J Neurotrauma. 2011;28(6):1121–26. doi:10.1089/neu.2010.1561.
  • Brenner LA, Vanderploeg RD, Terrio H. Assessment and diagnosis of mild traumatic brain injury, posttraumatic stress disorder, and other polytrauma conditions: burden of adversity hypothesis. Rehabil Psychol. 2009;54(3):239–46. doi:10.1037/a0016908.
  • Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem. 2014;47(10–11):876–88. doi:10.1016/j.clinbiochem.2014.01.028.
  • Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury–a systematic review. CNS Neurosci Ther. 2013;19(8):556–65. doi:10.1111/cns.2013.19.issue-8.
  • Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol. 2013;9(4):201–10. doi:10.1038/nrneurol.2013.9.
  • Zurek J, Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien). 2012;154(1):93–103; discussion 103. doi:10.1007/s00701-011-1175-2.
  • Haqqani AS, Hutchison JS, Ward R, Stanimirovic DB. Biomarkers and diagnosis; protein biomarkers in serum of pediatric patients with severe traumatic brain injury identified by ICAT-LC-MS/MS. J Neurotrauma. 2007;24(1):54–74. doi:10.1089/neu.2006.0079.
  • Gatson JW, Barillas J, Hynan LS, Diaz-Arrastia R, Wolf SE, Minei JP. Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury. J Neurosurg. 2014;121(5):1232–38. doi:10.3171/2014.7.JNS132474.
  • Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Mendez Giordano DI, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016;73(5):551–60. doi:10.1001/jamaneurol.2016.0039.
  • Papa L, Silvestri S, Brophy GM, Giordano P, Falk JL, Braga CF, Tan CN, Ameli NJ, Demery JA, Dixit NK, et al. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J Neurotrauma. 2014;31(22):1815–22. doi:10.1089/neu.2013.3245.
  • Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012;78(18):1428–33. doi:10.1212/WNL.0b013e318253d5c7.
  • Li J, Yu C, Sun Y, Li Y. Serum ubiquitin C-terminal hydrolase L1 as a biomarker for traumatic brain injury: a systematic review and meta-analysis. Am J Emerg Med. 2015;33(9):1191–96. doi:10.1016/j.ajem.2015.05.023.
  • Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, Kovacs N, Barzo P, Schmid K, Tortella FC, Wang KK, et al. Glial neuronal ratio (GNR): a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma. 2012 Apr 10;29(6):1096–104. doi:10.1089/neu.2011.2092.
  • Bedekovics T, Hussain S, Feldman AL, Galardy PJ. UCH-L1 is induced in germinal center B cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma. Blood. 2016;127(12):1564–74. doi:10.1182/blood-2015-07-656678.
  • Yang H, Zhang C, Fang S, Ou R, Li W, Xu Y. UCH-LI acts as a novel prognostic biomarker in gastric cardiac adenocarcinoma. Int J Clin Exp Pathol. 2015;8(11):13957–67.
  • Schroder C, Milde-Langosch K, Gebauer F, Schmid K, Mueller V, Wirtz RM, Meyer-Schwesinger C, Schluter H, Sauter G, Schumacher U. Prognostic relevance of ubiquitin C-terminal hydrolase L1 (UCH-L1) mRNA and protein expression in breast cancer patients. J Cancer Res Clin Oncol. 2013;139(10):1745–55. doi:10.1007/s00432-013-1496-z.
  • Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–95. doi:10.1146/annurev.ne.10.030187.001413.
  • Zetterberg H, Tanriverdi F, Unluhizarci K, Selcuklu A, Kelestimur F, Blennow K. Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj. 2009;23(9):723–26. doi:10.1080/02699050903120399.
  • Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet. 1978;1(8056):113–15. doi:10.1016/S0140-6736(78)90415-4.
  • Benjamins JA, Morell P. Proteins of myelin and their metabolism. Neurochem Res. 1978;3(2):137–74. doi:10.1007/BF00964057.
  • Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol. 1995;43(3):267–71. doi:10.1016/0090-3019(95)80012-6.
  • Zelenika D, Grima B, Pessac B. A new family of transcripts of the myelin basic protein gene: expression in brain and in immune system. J Neurochem. 1993;60(4):1574–77. doi:10.1111/jnc.1993.60.issue-4.
  • Peskind ER, Kraemer B, Zhang J. Biofluid biomarkers of mild traumatic brain injury: whither plasma tau. JAMA Neurol. 2015;72:1103. doi:10.1001/jamaneurol.2015.1789.
  • Zetterberg H. Review: tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol. 2017;43:194–99. doi:10.1111/nan.2017.43.issue-3.
  • Shahim P, Linemann T, Inekci D, Karsdal MA, Blennow K, Tegner Y, Zetterberg H, Henriksen K. Serum tau fragments predict return to play in concussed professional ice hockey players. J Neurotrauma. 2016 Nov 15;33(22):1995–9. Epub 2016 May 2. doi:10.1089/neu.2014.3741.
  • Huber BR, Meabon JS, Martin TJ, Mourad PD, Bennett R, Kraemer BC, Cernak I, Petrie EC, Emery MJ, Swenson ER, et al. Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J Alzheimers Dis. 2013;37(2):309–23.
  • Kleindienst A, Ross Bullock M. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma. 2006;23(8):1185–200. doi:10.1089/neu.2006.23.1185.
  • Bloomfield SM, McKinney J, Smith L, Brisman J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care. 2007;6(2):121–38. doi:10.1007/s12028-007-0008-x.
  • Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, Bellander BM, Nelson DW. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016;20:285. doi:10.1186/s13054-016-1450-y.
  • Thelin EP, Johannesson L, Nelson D, Bellander BM. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30(7):519–28. doi:10.1089/neu.2012.2553.
  • Thelin EP, Nelson DW, Bellander BM. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit Care. 2014;20(2):217–29. doi:10.1007/s12028-013-9916-0.
  • Pham N, Fazio V, Cucullo L, Teng Q, Biberthaler P, Bazarian JJ, Janigro D. Extracranial sources of S100B do not affect serum levels. PLoS One. 2010;5:9. doi:10.1371/annotation/bdcb41f2-a320-4401-a6ab-86e71738597e.
  • Ercole A, Thelin EP, Holst A, Bellander BM, Nelson DW. Kinetic modelling of serum S100b after traumatic brain injury. BMC Neurol. 2016;16:93. doi:10.1186/s12883-016-0614-3.
  • Shahim P, Mattsson N, Macy EM, Crimmins DL, Ladenson JH, Zetterberg H, Blennow K, Tegner Y. Serum visinin-like protein-1 in concussed professional ice hockey players. Brain Inj. 2015;29(7–8):872–76. doi:10.3109/02699052.2015.1018324.
  • Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70. doi:10.1038/nrneurol.2015.119.
  • Ahmed F, Choudhury NR, Dutta NK, Zannettino A, Knott R. Near superhydrophobic fibrous scaffold for endothelialization: fabrication, characterization and cellular activities. Biomacromolecules. 2013;14(11):3850–60. doi:10.1021/bm400938n.
  • Hladky SB, Barrand MA. Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS. 2016;13(1):19.
  • Zhao BQ, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007;38(2 Suppl):748–52. doi:10.1161/01.STR.0000253500.32979.d1.
  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–99. doi:10.1084/jem.20142290.
  • Johnston M, Papaiconomou C. Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002;17:227–30.
  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. doi:10.1038/nature14432.
  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99. doi:10.1007/s11064-015-1581-6.
  • Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, Giese RN, Wang B, Shi X, Nedergaard M. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33(6):834–45. doi:10.1038/jcbfm.2013.30.
  • Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35(2):518–26. doi:10.1523/JNEUROSCI.3742-14.2015.
  • Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26. doi:10.1186/2045-8118-11-26.
  • Wakeland W, Goldstein B. A computer model of intracranial pressure dynamics during traumatic brain injury that explicitly models fluid flows and volumes. Acta Neurochir Suppl. 2005;95:321–26.
  • Lafrenaye AD, Krahe TE, Povlishock JT. Moderately elevated intracranial pressure after diffuse traumatic brain injury is associated with exacerbated neuronal pathology and behavioral morbidity in the rat. J Cereb Blood Flow Metab. 2014;34(10):1628–36. doi:10.1038/jcbfm.2014.122.
  • Mitchell AJ. CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 51 studies. J Neurol Neurosurg Psychiatry. 2009;80(9):966–75. doi:10.1136/jnnp.2008.167791.
  • O’Bryant SE, Xiao G, Barber R, Huebinger R, Wilhelmsen K, Edwards M, Graff-Radford N, Doody R, Diaz-Arrastia R, Texas Alzheimer’s R, et al. A blood-based screening tool for Alzheimer’s disease that spans serum and plasma: findings from TARC and ADNI. PLoS One. 2011;6(12):e28092. doi:10.1371/journal.pone.0028092.
  • Neselius S, Brisby H, Granholm F, Zetterberg H, Blennow K. Monitoring concussion in a knocked-out boxer by CSF biomarker analysis. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2536–39. doi:10.1007/s00167-014-3066-6.
  • Neselius S, Brisby H, Marcusson J, Zetterberg H, Blennow K, Karlsson T. Neurological assessment and its relationship to CSF biomarkers in amateur boxers. PLoS One. 2014;9(6):e99870. doi:10.1371/journal.pone.0099870.
  • Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12(2):112–18. doi:10.1097/01.ccx.0000216576.11439.df.
  • Microdialysis–Principles UU. applications for studies in animals and man. J Intern Med. 1991;230(4):365–73. doi:10.1111/j.1365-2796.1991.tb00459.x.
  • Rostami E, Rocksen D, Ekberg NR, Goiny M, Ungerstedt U. Brain metabolism and oxygenation in healthy pigs receiving hypoventilation and hyperoxia. Respir Physiol Neurobiol. 2013;189(3):537–42. doi:10.1016/j.resp.2013.08.010.
  • Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10(18):2145–52. doi:10.2174/1381612043384105.
  • Marklund N, Blennow K, Zetterberg H, Ronne-Engstrom E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg. 2009;110(6):1227–37. doi:10.3171/2008.9.JNS08584.
  • Nwachuku EL, Puccio AM, Adeboye A, Chang YF, Kim J, Okonkwo DO. Time course of cerebrospinal fluid inflammatory biomarkers and relationship to 6-month neurologic outcome in adult severe traumatic brain injury. Clin Neurol Neurosurg. 2016;149:1–5. doi:10.1016/j.clineuro.2016.06.009.
  • Pineda JA, Wang KK, Hayes RL. Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol. 2004;14(2):202–09. doi:10.1111/j.1750-3639.2004.tb00054.x.
  • Engstrom M, Polito A, Reinstrup P, Romner B, Ryding E, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg. 2005;102(3):460–69. doi:10.3171/jns.2005.102.3.0460.
  • Voss JD, Connolly J, Schwab KA, Scher AI. Update on the epidemiology of concussion/mild traumatic brain injury. Curr Pain Headache Rep. 2015;19(7):32. doi:10.1007/s11916-015-0506-z.
  • Clay MB, Glover KL, Lowe DT. Epidemiology of concussion in sport: a literature review. J Chiropr Med. 2013;12(4):230–51. doi:10.1016/j.jcm.2012.11.005.
  • Laker SR. Epidemiology of concussion and mild traumatic brain injury. Pm R. 2011;3(10 Suppl 2):S354–8. doi:10.1016/j.pmrj.2011.07.017.
  • Doolan AW, Day DD, Maerlender AC, Goforth M, Gunnar Brolinson P. A review of return to play issues and sports-related concussion. Ann Biomed Eng. 2012;40(1):106–13. doi:10.1007/s10439-011-0413-3.
  • Karr JE, Areshenkoff CN, Duggan EC, Garcia-Barrera MA. Blast-related mild traumatic brain injury: a Bayesian random-effects meta-analysis on the cognitive outcomes of concussion among military personnel. Neuropsychol Rev. 2014;24(4):428–44. doi:10.1007/s11065-014-9271-8.
  • Echlin PS, Tator CH, Cusimano MD, Cantu RC, Taunton JE, Upshur RE, Czarnota M, Hall CR, Johnson AM, Forwell LA, et al. Return to play after an initial or recurrent concussion in a prospective study of physician-observed junior ice hockey concussions: implications for return to play after a concussion. Neurosurg Focus. 2010;29(5):E5. doi:10.3171/2010.9.FOCUS10210.
  • Tsilioni I, Panagiotidou S, Theoharides TC. Exosomes in neurologic and psychiatric disorders. Clin Ther. 2014;36(6):882–88. doi:10.1016/j.clinthera.2014.05.005.
  • Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol. 2014;49(1):590–600. doi:10.1007/s12035-013-8544-1.