216
Views
9
CrossRef citations to date
0
Altmetric
Articles

A novel method for the rapid detection of post-translationally modified visinin-like protein 1 in rat models of brain injury

, , , , &
Pages 363-380 | Received 02 Jun 2017, Accepted 22 Nov 2017, Published online: 28 Dec 2017

References

  • Prevention, C.f.D.C.a. Report to congress on traumatic brain injury in the United States: epidemiology and rebailitation. In: N.C.f.I.P.a.C.D.o.U.I. Prevention, editor. Atlanta, GA: Center for Disease Control and Prevention; 2015.
  • Taylor BC, Hagel EM, Carlson KF, Cifu DX, Cutting A, Bidelspach DE, Sayer NA. Prevalence and costs of co-occurring traumatic brain injury with and without psychiatric disturbance and pain among afghanistan and Iraq war veteran v.A. users. Med Care. 2012;50(4):342–46. doi:10.1097/MLR.0b013e318245a558.
  • Brasure M, Lamberty GJ, Sayer NA, Nelson NW, MacDonald R, Ouellette J, Tacklind J, Grove M, Rutks IR, Bulter ME, et al. Multidisciplinary postacute rehabilitation for moderate to severe traumatic brain injury in adults. In: A.f.H.R.a. Quality, editor. Rockville, MD: Agency for Healthcare Research and Quality; 2012.
  • Jagoda AS, Bazarian JJ, Bruns JJ Jr., Cantrill SV, Gean AD, Howard PK, Ghajar J, Riggio S, Wright DW, Wears RL, et al. Clinical policy: neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting. J Emerg Nurs. 2009;35(2):e5–40. doi:10.1016/j.jen.2008.12.010.
  • Welch RD, Ayaz SI, Lewis LM, Unden J, Chen JY, Mika VH, Saville B, Tyndall JA, Nash M, Buki A, et al. Ability of serum glial fibrillary acidic protein, ubiquitin c-terminal hydrolase-l1, and s100b to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J Neurotrauma. 2016;33(2):203–14. doi:10.1089/neu.2015.4149.
  • Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, et al. Serum levels of ubiquitin c-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg. 2012;72(5):1335–44. doi:10.1097/TA.0b013e3182491e3d.
  • Wolf H, Frantal S, Pajenda G, Leitgeb J, Sarahrudi K, Hajdu S. Analysis of s100 calcium binding protein b serum levels in different types of traumatic intracranial lesions. J Neurotrauma. 2015;32(1):23–27. doi:10.1089/neu.2013.3202.
  • Papa L, Silvestri S, Brophy GM, Giordano P, Falk JL, Braga CF, Tan CN, Ameli NJ, Demery JA, Dixit NK, et al. Gfap out-performs s100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J Neurotrauma. 2014;31(22):1815–22. doi:10.1089/neu.2013.3245.
  • Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med. 2012;59(6):471–83. doi:10.1016/j.annemergmed.2011.08.021.
  • Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, McMahon PJ, Sorani MD, Yuh EL, Lingsma HF, Maas AI, et al. R. Transforming, and I. Clinical knowledge in traumatic brain injury: gfap-bdp as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma. 2013;30(17):1490–97. doi:10.1089/neu.2013.2883.
  • Yealy DM, Hogan DE. Imaging after head trauma. Who needs what? Emerg Med Cli North Am. 1991;9(4):707–17.
  • Vollmer DG, Dacey RG Jr. The management of mild and moderate head injuries. Neurosurg Clin N Am. 1991;2(2):437–55.
  • Herrmann M, Jost S, Kutz S, Ebert AD, Kratz T, Wunderlich MT, Synowitz H. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma. 2000;17(2):113–22. doi:10.1089/neu.2000.17.113.
  • Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–95. doi:10.1146/annurev.ne.10.030187.001413.
  • McMahon PJ, Panczykowski DM, Yue JK, Puccio AM, Inoue T, Sorani MD, Lingsma HF, Maas AI, Valadka AB, Yuh EL, et al.; T.-T. Investigators. Measurement of the glial fibrillary acidic protein and its breakdown products gfap-bdp biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J Neurotrauma. 2015;32(8):527–33. doi:10.1089/neu.2014.3635.
  • Unden J, Christensson B, Bellner J, Alling C, Romner B. Serum s100b levels in patients with cerebral and extracerebral infectious disease. Scand J Infect Dis. 2004;36(1):10–13. doi:10.1080/00365540310017294.
  • Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43. doi:10.1016/j.expneurol.2012.01.013.
  • Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci. 2001;21(6):1923–30.
  • Saatman KE, Creed J, Raghupathi R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics. 2010;7(1):31–42. doi:10.1016/j.nurt.2009.11.002.
  • Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30(1):33–48, vii-iii. doi:10.1016/j.csm.2010.09.001.
  • Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.
  • Ikura M. Calcium binding and conformational response in ef-hand proteins. Trends Biochem Sci. 1996;21(1):14–17. doi:10.1016/S0968-0004(06)80021-6.
  • Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED, Braunewell KH. Regional and cellular distribution of neural visinin-like protein immunoreactivities (vilip-1 and vilip-3) in human brain. J Neurocytol. 1999;28(8):655–62. doi:10.1023/A:1007056731551.
  • Laterza OF, Modur VR, Crimmins DL, Olander JV, Landt Y, Lee JM, Ladenson JH. Identification of novel brain biomarkers. Clin Chem. 2006;52(9):1713–21. doi:10.1373/clinchem.2006.070912.
  • Stejskal D, Sporova L, Svestak M, Karpisek M. Determination of serum visinin like protein-1 and its potential for the diagnosis of brain injury due to the stroke: a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(3):263–68. doi:10.5507/bp.2011.049.
  • Shahim P, Mattsson N, Macy EM, Crimmins DL, Ladenson JH, Zetterberg H, Blennow K, Tegner Y. Serum visinin-like protein-1 in concussed professional ice hockey players. Brain Inj. 2015;29(7–8):872–76. doi:10.3109/02699052.2015.1018324.
  • Furman JL, Sompol P, Kraner SD, Pleiss MM, Putman EJ, Dunkerson J, Mohmmad Abdul H, Roberts KN, Scheff SW, Norris CM. Blockade of astrocytic calcineurin/nfat signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury. J Neurosci. 2016;36(5):1502–15. doi:10.1523/JNEUROSCI.1930-15.2016.
  • Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part ii: morphological characterization. J Neurosurg. 1994;80(2):301–13. doi:10.3171/jns.1994.80.2.0301.
  • Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part i: pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291–300. doi:10.3171/jns.1994.80.2.0291.
  • Schmued LC, Hopkins KJ. Fluoro-jade b: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874(2):123–30. doi:10.1016/S0006-8993(00)02513-0.
  • Anderson KJ, Miller KM, Fugaccia I, Scheff SW. Regional distribution of fluoro-jade b staining in the hippocampus following traumatic brain injury. Exp Neurol. 2005;193(1):125–30. doi:10.1016/j.expneurol.2004.11.025.
  • Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM, McMahon PJ, Inoue T, Yuh EL, Lingsma HF, et al.; T.-T. Investigators. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin c-terminal hydrolase-l1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31(1):19–25. doi:10.1089/neu.2013.3040.
  • Posti JP, Hossain I, Takala RSK, Liedes H, Newcombe V, Outtrim J, Katila AJ, Frantzen J, Seppala HA, Coles JP, et al.; T. Investigators. Glial fibrillary acidic protein and ubiquitin c-terminal hydrolase-l1 are not specific biomarkers for mild ct-negative traumatic brain injury. J Neurotrauma. 2016;34(7):1–12.
  • Buonora JE, Yarnell AM, Lazarus RC, Mousseau M, Latour LL, Rizoli SB, Baker AJ, Rhind SG, Diaz-Arrastia R, Mueller GP. Multivariate analysis of traumatic brain injury: development of an assessment score. Front Neurol. 2015;6:68. doi:10.3389/fneur.2015.00068.
  • Lee JY, Lee CY, Kim HR, Lee CH, Kim HW, Kim JH. A role of serum-based neuronal and glial markers as potential predictors for distinguishing severity and related outcomes in traumatic brain injury. J Korean Neurosurg Soc. 2015;58(2):93–100. doi:10.3340/jkns.2015.58.2.93.
  • Lee JM, Blennow K, Andreasen N, Laterza O, Modur V, Olander J, Gao F, Ohlendorf M, Ladenson JH. The brain injury biomarker vlp-1 is increased in the cerebrospinal fluid of alzheimer disease patients. Clin Chem. 2008;54(10):1617–23. doi:10.1373/clinchem.2008.104497.
  • Tarawneh R, D’Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, et al. Visinin-like protein-1: diagnostic and prognostic biomarker in alzheimer disease. Ann Neurol. 2011;70(2):274–85. doi:10.1002/ana.22448.
  • Tarawneh R, Head D, Allison S, Buckles V, Fagan AM, Ladenson JH, Morris JC, Holtzman DM. Cerebrospinal fluid markers of neurodegeneration and rates of brain atrophy in early alzheimer disease. JAMA Neurol. 2015;72(6):656–65. doi:10.1001/jamaneurol.2015.0202.
  • Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DM. Csf vilip-1 predicts rates of cognitive decline in early alzheimer disease. Neurology. 2012;78(10):709–19. doi:10.1212/WNL.0b013e318248e568.
  • Luo X, Hou L, Shi H, Zhong X, Zhang Y, Zheng D, Tan Y, Hu G, Mu N, Chan J, et al. Csf levels of the neuronal injury biomarker visinin-like protein-1 in alzheimer’s disease and dementia with lewy bodies. J Neurochem. 2013;127(5):681–90. doi:10.1111/jnc.2013.127.issue-5.
  • Sutphen CL, Jasielec MS, Shah AR, Macy EM, Xiong C, Vlassenko AG, Benzinger TL, Stoops EE, Vanderstichele HM, Brix B, et al. Longitudinal cerebrospinal fluid biomarker changes in preclinical alzheimer disease during middle age. JAMA Neurol. 2015;72(9):1029–42. doi:10.1001/jamaneurol.2015.1285.
  • Mroczko B, Groblewska M, Zboch M, Muszynski P, Zajkowska A, Borawska R, Szmitkowski M, Kornhuber J, Lewczuk P. Evaluation of visinin-like protein 1 concentrations in the cerebrospinal fluid of patients with mild cognitive impairment as a dynamic biomarker of alzheimer’s disease. J Alzheimers Dis. 2015;43(3):1031–37.
  • Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, Scheltens P, Van Der Flier WM, Morris JC, Holtzman DM, et al. Cerebrospinal fluid vilip-1 and ykl-40, candidate biomarkers to diagnose, predict and monitor alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther. 2015;7(1):59. doi:10.1186/s13195-015-0142-1.
  • Scheff SW, Baldwin SA, Brown RW, Kraemer PJ. Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. J Neurotrauma. 1997;14(9):615–27. doi:10.1089/neu.1997.14.615.
  • Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009;33(3):275–86. doi:10.1016/j.molcel.2009.01.014.
  • Sun L, Chen ZJ. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol. 2004;16(2):119–26. doi:10.1016/j.ceb.2004.02.005.
  • Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005;6(8):599–609. doi:10.1038/nrm1700.
  • Yao X, Liu J, McCabe JT. Ubiquitin and ubiquitin-conjugated protein expression in the rat cerebral cortex and hippocampus following traumatic brain injury (tbi). Brain Res. 2007;1182:116–22. doi:10.1016/j.brainres.2007.08.076.
  • Majetschak M, King DR, Krehmeier U, Busby LT, Thome C, Vajkoczy S, Proctor KG. Ubiquitin immunoreactivity in cerebrospinal fluid after traumatic brain injury: clinical and experimental findings. Crit Care Med. 2005;33(7):1589–94. doi:10.1097/01.CCM.0000169883.41245.23.
  • Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35(2):518–26. doi:10.1523/JNEUROSCI.3742-14.2015.
  • Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein pgp 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989;246(4930):670–73. doi:10.1126/science.2530630.
  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The uch-l1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and parkinson’s disease susceptibility. Cell. 2002;111(2):209–18. doi:10.1016/S0092-8674(02)01012-7.
  • Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, et al. Ubiquitin carboxy-terminal hydrolase l1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet. 2003;12(16):1945–58. doi:10.1093/hmg/ddg211.
  • Li Z, Melandri F, Berdo I, Jansen M, Hunter L, Wright S, Valbrun D, Figueiredo-Pereira ME. Delta12-prostaglandin j2 inhibits the ubiquitin hydrolase uch-l1 and elicits ubiquitin-protein aggregation without proteasome inhibition. Biochem Biophys Res Commun. 2004;319(4):1171–80. doi:10.1016/j.bbrc.2004.05.098.
  • Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, et al. Ubiquitin c-terminal hydrolase-l1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci. 2010;31(4):722–32. doi:10.1111/j.1460-9568.2010.07097.x.
  • Lin L, Braunewell KH, Gundelfinger ED, Anand R. Functional analysis of calcium-binding ef-hand motifs of visinin-like protein-1. Biochem Biophys Res Commun. 2002;296(4):827–32. doi:10.1016/S0006-291X(02)00943-9.
  • Rebaud S, Simon A, Wang CK, Mason L, Blum L, Hofmann A, Girard-Egrot A. Comparison of vilip-1 and vilip-3 binding to phospholipid monolayers. PLoS One. 2014;9(4):e93948. doi:10.1371/journal.pone.0093948.
  • Rebaud S, Wang CK, Sarkis J, Mason L, Simon A, Blum LJ, Hofmann A, Girard-Egrot AP. Specific interaction to pip2 increases the kinetic rate of membrane binding of vilips, a subfamily of neuronal calcium sensors (ncs) proteins. Biochim Biophys Acta. 2014;1838(10):2698–707. doi:10.1016/j.bbamem.2014.06.021.
  • Liebl MP, Kaya AM, Tenzer S, Mittenzwei R, Koziollek-Drechsler I, Schild H, Moosmann B, Behl C, Clement AM. Dimerization of visinin-like protein 1 is regulated by oxidative stress and calcium and is a pathological hallmark of amyotrophic lateral sclerosis. Free Radic Biol Med. 2014;72:41–54. doi:10.1016/j.freeradbiomed.2014.04.008.
  • Spilker C, Braunewell KH. Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein vilip-3, and comparison with vilip-1 in hippocampal neurons. Mol Cell Neurosci. 2003;24(3):766–78. doi:10.1016/S1044-7431(03)00242-2.
  • Spilker C, Dresbach T, Braunewell KH. Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein vilip-1 to different membrane compartments in living hippocampal neurons. J Neurosci. 2002;22(17):7331–39.
  • Braunewell KH, Brackmann M, Schaupp M, Spilker C, Anand R, Gundelfinger ED. Intracellular neuronal calcium sensor (ncs) protein vilip-1 modulates cgmp signalling pathways in transfected neural cells and cerebellar granule neurones. J Neurochem. 2001;78(6):1277–86. doi:10.1046/j.1471-4159.2001.00506.x.
  • Zhao C, Anand R, Braunewell KH. Nicotine-induced ca2+-myristoyl switch of neuronal ca2+ sensor vilip-1 in hippocampal neurons: a possible crosstalk mechanism for nicotinic receptors. Cell Mol Neurobiol. 2009;29(2):273–86. doi:10.1007/s10571-008-9320-z.
  • Zhao CJ, Noack C, Brackmann M, Gloveli T, Maelicke A, Heinemann U, Anand R, Braunewell KH. Neuronal ca2+ sensor vilip-1 leads to the upregulation of functional alpha4beta2 nicotinic acetylcholine receptors in hippocampal neurons. Mol Cell Neurosci. 2009;40(2):280–92. doi:10.1016/j.mcn.2008.11.001.
  • Mathisen PM, Johnson JM, Kawczak JA, Tuohy VK. Visinin-like protein (vilip) is a neuron-specific calcium-dependent double-stranded RNA-binding protein. J Biol Chem. 1999;274(44):31571–76. doi:10.1074/jbc.274.44.31571.
  • Brackmann M, Schuchmann S, Anand R, Braunewell KH. Neuronal ca2+ sensor protein vilip-1 affects cgmp signalling of guanylyl cyclase b by regulating clathrin-dependent receptor recycling in hippocampal neurons. J Cell Sci. 2005;118(Pt 11):2495–505. doi:10.1242/jcs.02376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.