231
Views
8
CrossRef citations to date
0
Altmetric
Articles

Single clip: An improvement of the filament-perforation mouse subarachnoid haemorrhage model

, , , , , , , & show all
Pages 701-711 | Received 06 Dec 2017, Accepted 06 May 2018, Published online: 08 Oct 2018

References

  • Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91. doi:10.1016/j.pneurobio.2013.09.002.
  • Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97:14–37. doi:10.1016/j.pneurobio.2012.02.003.
  • Marbacher S. Animal models for the study of subarachnoid hemorrhage: are we moving towards increased standardization? Transl Stroke Res. 2016;7:1–2. doi:10.1007/s12975-015-0442-6.
  • Lee J-Y, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65:331–43. doi:10.1227/01.neu.0000345649.78556.26.
  • Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, Qin X, Zhong J, Li X, Li Y, et al. High-throughput sequencing and co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci Rep. 2017;7:46577. doi:10.1038/srep46577.
  • Macleod MR, Fisher M, O’collins V, Sena ES, Dirnagl U, Bath PM, Buchan A, Van Der Worp HB, Traystman R, Minematsu K, et al. Good laboratory practice: preventing introduction of bias at the bench. Stroke. 2009;40:e50–52. doi:10.1161/STROKEAHA.108.525386.
  • Hollig A, Weinandy A, Nolte K, Clusmann H, Rossaint R, Coburn M. Experimental subarachnoid hemorrhage in rats: comparison of two endovascular perforation techniques with respect to success rate, confounding pathologies and early hippocampal tissue lesion pattern. PLoS One. 2015;10:e0123398. doi:10.1371/journal.pone.0123398.
  • Schuller K, Buhler D, Plesnila N. A murine model of subarachnoid hemorrhage. J Vis Exp. 2013;e50845. doi:10.3791/50845.
  • Muroi C, Fujioka M, Okuchi K, Fandino J, Keller E, Sakamoto Y, Mishima K, Iwasaki K, Fujiwara M. Filament perforation model for mouse subarachnoid hemorrhage: surgical-technical considerations. Br J Neurosurg. 2014;28:722–32. doi:10.3109/02688697.2014.918579.
  • Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34. doi:10.1016/j.jneumeth.2007.08.004.
  • Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, Cao F, Sun X, Chen L, Vitek MP, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030–44. doi:10.18632/oncotarget.10821.
  • Qin X, You H, Cao F, Wu Y, Peng J, Pang J, Xu H, Chen Y, Chen L, Vitek M, et al. Apolipoprotein E mimetic peptide increases cerebral glucose uptake by relieving blood brain barrier disruption following controlled cortical impact in mice: an 18F-fluorodeoxyglucose PET/CT Study. J Neurotrauma. 2016; doi:10.1089/neu.2016.4485.
  • Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, Hua Y. MRI Characterization in the acute phase of experimental subarachnoid hemorrhage. Transl Stroke Res. 2016; doi:10.1007/s12975-016-0511-5.
  • Egashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014;45:2141–43. doi:10.1161/STROKEAHA.114.005307.
  • Cai J, Cao S, Chen J, Yan F, Chen G, Dai Y. Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett. 2015;600:238–43. doi:10.1016/j.neulet.2015.06.023.
  • Hong Y, Shao A, Wang J, Chen S, Wu H, Mcbride DW, Wu Q, Sun X, Zhang J. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3beta signaling pathway. PLoS One. 2014;9:e96212. doi:10.1371/journal.pone.0096212.
  • Egashira Y, Zhao H, Hua Y, Keep RF, Xi G. White matter injury after subarachnoid hemorrhage: role of blood-brain barrier disruption and matrix metalloproteinase-9. Stroke. 2015;46:2909–15. doi:10.1161/STROKEAHA.115.010351.
  • Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94. doi:10.1038/nn1997.
  • Wu Y, Pang J, Peng J, Cao F, Vitek MP, Li F, Jiang Y, Sun X. An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage. Neurosci Lett. 2016;627:92–99. doi:10.1016/j.neulet.2016.05.058.
  • Kamii H, Kato I, Kinouchi H, Chan PH, Epstein CJ, Akabane A, Okamoto H, Yoshimoto T, Hsu CY. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn Superoxide dismutase editorial comment. Stroke. 1999;30:867–72. doi:10.1161/01.str.30.4.867.
  • Feiler S, Friedrich B, Scholler K, Thal SC, Plesnila N. Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. J Neurosci Methods. 2010;190:164–70. doi:10.1016/j.jneumeth.2010.05.005.
  • Song J, Li P, Chaudhary N, Gemmete JJ, Thompson BG, Xi G, Pandey AS. Correlating cerebral (18)FDG PET-CT patterns with histological analysis during early brain injury in a rat subarachnoid hemorrhage model. Transl Stroke Res. 2015;6:290–95. doi:10.1007/s12975-015-0396-8.
  • Zetterling M, Engstrom BE, Arnardottir S, Ronne-Engstrom E. Somatotropic and thyroid hormones in the acute phase of subarachnoid haemorrhage. Acta Neurochir (Wien). 2013;155:2053–62. doi:10.1007/s00701-013-1670-8.
  • Du GJ, Lu G, Zheng ZY, Poon WS, Wong KC. Endovascular perforation murine model of subarachnoid hemorrhage. Acta Neurochir Suppl. 2016;121:83–88. doi:10.1007/978-3-319-18497-5_14.
  • Greenhalgh AD, Rothwell NJ, Allan SM. An endovascular perforation model of subarachnoid haemorrhage in rat produces heterogeneous infarcts that increase with blood load. Transl Stroke Res. 2012;3:164–72. doi:10.1007/s12975-011-0124-y.
  • Mutoh T, Mutoh T, Sasaki K, Nakamura K, Tatewaki Y, Ishikawa T, Taki Y. Neurocardiac protection with milrinone for restoring acute cerebral hypoperfusion and delayed ischemic injury after experimental subarachnoid hemorrhage. Neurosci Lett. 2017;640:70–75. doi:10.1016/j.neulet.2017.01.008.
  • Platz J, Guresir E, Wagner M, Seifert V, Konczalla J. Increased risk of delayed cerebral ischemia in subarachnoid hemorrhage patients with additional intracerebral hematoma. J Neurosurg. 2016;1–7. doi:10.3171/2015.12.JNS151563.
  • Pisapia JM, Xu X, Kelly J, Yeung J, Carrion G, Tong H, Meghan S, El-Falaky OM, Grady MS, Smith DH, et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp Neurol. 2012;233:357–63. doi:10.1016/j.expneurol.2011.10.029.
  • Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, Martin RD, Han J, Zhang J, Zhou C. Blood-brain barrier disruption following subarchnoid hemorrhage may be faciliated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011;230:240–47. doi:10.1016/j.expneurol.2011.04.022.
  • Chaudhary N, Pandey AS, Gemmete JJ, Hua Y, Huang Y, Gu Y, Xi G. Diffusion tensor imaging in hemorrhagic stroke. Exp Neurol. 2015;272:88–96. doi:10.1016/j.expneurol.2015.05.011.
  • Kummer TT, Magnoni S, Macdonald CL, Dikranian K, Milner E, Sorrell J, Conte V, Benetatos JJ, Zipfel GJ, Brody DL. Experimental subarachnoid haemorrhage results in multifocal axonal injury. Brain. 2015;138:2608–18. doi:10.1093/brain/awv180.
  • Yeo SS, Choi BY, Chang CH, Kim SH, Jung YJ, Jang SH. Evidence of corticospinal tract injury at midbrain in patients with subarachnoid hemorrhage. Stroke. 2012;43:2239–41. doi:10.1161/STROKEAHA.112.661116.
  • Peng JH, Qin XH, Pang JW, Wu Y, Dong JH, Huang CR, Wan WF, Yang XB, Sun XC, Chen LG, et al. Apolipoprotein E epsilon4: A possible risk factor of intracranial pressure and white matter perfusion in good-grade aneurysmal subarachnoid hemorrhage patients at early stage. Front Neurol. 2017;8:150. doi:10.3389/fneur.2017.00150.
  • Wu Y, Peng J, Pang J, Sun X, Jiang Y. Potential mechanisms of white matter injury in the acute phase of experimental subarachnoid haemorrhage. Brain. 2017;140:e36. doi:10.1093/brain/awx084.
  • Akbari CM, Saouaf R, Barnhill DF, Newman PA, Logerfo FW, Veves A. Endothelium-dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia. J Vasc Surg. 1998;28:687–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.