444
Views
14
CrossRef citations to date
0
Altmetric
Articles

The genetic ablation of tau improves long-term, but not short-term, functional outcomes after experimental traumatic brain injury in mice

, , , , , , , , , ORCID Icon, & ORCID Icon show all
Pages 131-139 | Received 24 Jul 2018, Accepted 19 Aug 2019, Published online: 16 Sep 2019

References

  • Blennow K, Hardy J, Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012;76(5):886–99. doi:10.1016/j.neuron.2012.11.021.
  • Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42. doi:10.1038/nrn3407.
  • Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid‐beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012;22(2):142–49. doi:10.1111/j.1750-3639.2011.00513.x.
  • Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu SJ, Sashindranath M, Medcalf RL, Johnston LA, Hoven CM, Jones NC, et al. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain. 2015;138(5):1297–313. doi:10.1093/brain/awv053.
  • Thom M, Liu JY, Thompson P, Phadke R, Narkiewicz M, Martinian L, Marsdon D, Koepp M, Cabocio L, Catarino CB, et al. Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study. Brain. 2011;134(10):2969–81. doi:10.1093/brain/awr209.
  • Zheng P, Shultz SR, Hovens CM, Velakoulis D, Jones NC, O’Brien TJ. Hyperphosphorylated tau is implicated in acquired epilepsy and neuropsychiatric comorbidities. Mol Neurobiol. 2014;49(3):1532–39. doi:10.1007/s12035-013-8601-9.
  • Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663. doi:10.1038/nrn2194.
  • Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70(3):410–26. doi:10.1016/j.neuron.2011.04.009.
  • Alonso ADC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA. 1994;91(12):5562–66. doi:10.1073/pnas.91.12.5562.
  • Alonso ADC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med. 1996;2(7):783–87.
  • Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A, Yoon SY, Zwilling D, Yan TX, Chen L, Huang Y. Apolipoprotein E4 causes age-and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci. 2010;30(41):13707–17. doi:10.1523/JNEUROSCI.4040-10.2010.
  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 2007;316(5825):750–54. doi:10.1126/science.1141736.
  • Liu SJ, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, Corcoran NM, Johnston LA, Hovens CM, Hudson M, et al. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain. 2016;139(7):1919–38. doi:10.1093/brain/aww116.
  • Tan XL, Wright DK, Liu S, Hovens C, O’Brien TJ, Shultz SR. Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology. 2016;108:382–93. doi:10.1016/j.neuropharm.2016.05.001.
  • Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BX, Adlard PA, Cherny RA, Lam LQ, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;29:291–95.
  • Liu S, Shen Y, Shultz SR, Nguyen A, Hovens C, Adlard PA, Bush AI, Chan J, Kwan P, O’Brien TJ, et al. Accelerated kindling epileptogenesis in Tg4510 tau transgenic mice, but not in tau knockout mice. Epilepsia. 2017;58(9):e136–2141. doi:10.1111/epi.13847.
  • Johnstone MR, Sun M, Taylor CJ, Brady RD, Grills BL, Church JE, Shultz SR, McDonald SJ. Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj. 2018;32:257–68. doi:10.1080/02699052.2017.1394492.
  • Shultz SR, Tan XL, Wright DK, Liu SJ, Semple BD, Johnston L, Jones NC, Cook AD, Hamilton JA, O’Brien TJ. Granulocyte-macrophage colony-stimulating factor is neuroprotective in experimental traumatic brain injury. J Neurotrauma. 2014;31(10):976–83. doi:10.1089/neu.2013.3106.
  • Shultz SR, McDonald SJ, Haar CV, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: translational challenges and strategies. Neurosci Biobehav Rev. 2017;76:396–414. doi:10.1016/j.neubiorev.2016.09.014.
  • Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behaviour in rodents. Nat Protoc. 2007;2(2):322–28. doi:10.1038/nprot.2007.44.
  • Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, Sobey CG, Johnstone MR, O’Brien TJ, Semple BD, McDonald SJ, et al. Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav Immun. 2017;66:359–71. doi:10.1016/j.bbi.2017.08.005.
  • Wright DK, O’Brien TJ, Shultz SR, Mychasiuk R. Sex matters: repetitive mild traumatic brain injury in adolescent rats. Ann Clin Transl Neurol. 2017;4(9):640–54. doi:10.1002/acn3.441.
  • Bortolato M, Godar SC, Davarian S, Chen K, Shih JC. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice. Neuropsychopharmacology. 2009;34(13):2746–57. doi:10.1038/npp.2009.118.
  • Lindemann S, Gernert M, Bennay M, Koch M, Löscher W. Comparative analysis of anxiety-like behaviors and sensorimotor functions in two rat mutants, ci2 and ci3, with lateralized rotational behaviour. Physiol Behav. 2008;93(1–2):417–26. doi:10.1016/j.physbeh.2007.11.034.
  • Meyer JS, Piper BJ, Vancollie VE. Development and characterization of a novel animal model of intermittent MDMA (“Ecstasy”) exposure during adolescence. Ann NY Acad Sci. 2008;1139(1):151–63. doi:10.1196/annals.1432.029.
  • Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. A single mild fluid percussion injury induces short-term behavioural and neuropathological changes in the long–evans rat: support for an animal model of concussion. Behav Brain Res. 2011;224(2):326–35. doi:10.1016/j.bbr.2011.06.012.
  • Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma. 2012;29(14):2375–92. doi:10.1089/neu.2012.2408.
  • Johnstone VP, Wright DK, Wong K, O’Brien TJ, Rajan R, Shultz SR. Experimental traumatic brain injury results in long-term recovery of functional responsiveness in sensory cortex but persisting structural changes and sensorimotor, cognitive, and emotional deficits. J Neurotrauma. 2015;32(17):1333–46. doi:10.1089/neu.2014.3785.
  • Jones NC, Cardamone L, Williams JP, Salzberg MR, Myers D, O’Brien TJ. Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats. J Neurotrauma. 2008;25(11):1367–74. doi:10.1089/neu.2008.0641.
  • Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. The clinical relevance of behavior testing in animal models of traumatic brain injury. J Neurotrauma. 2019. doi:10.1089/neu.2018.6149.
  • Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis. 2019;123:27–41. doi:10.1016/j.nbd.2018.07.018.
  • Fan LW, Tien LT, Mitchell HJ, Rhodes PG, Cai Z. α‐Phenyl‐n‐tert‐butyl‐nitrone ameliorates hippocampal injury and improves learning and memory in juvenile rats following neonatal exposure to lipopolysaccharide. Eur J Neurosci. 2008;7(6):1475–84. doi:10.1111/j.1460-9568.2008.06121.x.
  • Shultz SR, Cardamone L, Liu YR, Hogan RE, Maccotta L, Wright DK, Zheng P, Koe A, Gregoire MC, Williams JP, et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia. 2013;54(7):1240–50. doi:10.1111/epi.12223.
  • Cheng JS, Craft R, Yu GQ, Ho K, Wang X, Mohan G, Mangnitsky S, Ponnusamy R, Mucke L. Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS One. 2014;9(12):e115765. doi:10.1371/journal.pone.0115765.
  • Collins-Praino LE, Corrigan F. Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury. Brain Behav Immun. 2017;60:369–82. doi:10.106/j.bbi.2016.09.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.