167
Views
2
CrossRef citations to date
0
Altmetric
Research Article

MiR-21 participates in the neuroprotection of diazoxide against hypoxic-ischemia encephalopathy by targeting PDCD4

, &
Pages 876-885 | Received 18 Nov 2021, Accepted 30 May 2022, Published online: 12 Jun 2022

References

  • Koehler RC, Yang ZJ, Lee JK, Martin LJ, et al. Perinatal hypoxic-ischemic brain injury in large animal models: relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab. 2018;38(12):2092–111. doi:10.1177/0271678X18797328.
  • Li B, Concepcion K, Meng X, Zhang L, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol. 2017;159:50–68. doi:10.1016/j.pneurobio.2017.10.006.
  • Natarajan G, Pappas A, Shankaran S.Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE). Semin Perinatol. 2016;40(8):549–55. doi:10.1053/j.semperi.2016.09.007.
  • Rivero-Arias O, Eddama O, Azzopardi D, Edwards AD, Strohm B, Campbell H.Hypothermia for perinatal asphyxia: trial-based resource use and costs at 6-7 years. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F285–f92. doi:10.1136/archdischild-2017-314685.
  • Sarkar S, Barks JD.Systemic complications and hypothermia. Semin Fetal Neonatal Med. 2010;15(5):270–75. doi:10.1016/j.siny.2010.02.001.
  • Martínez-Moreno M, Batlle M, Ortega FJ, Gimeno-Bayón J, Andrade C, Mahy N, Rodríguez, MJ . Diazoxide enhances excitotoxicity-induced neurogenesis and attenuates neurodegeneration in the rat non-neurogenic hippocampus. Neuroscience. 2016;333:229–43. doi:10.1016/j.neuroscience.2016.07.032.
  • Zhang L, Cai S, Cao S, Nie J, Zhou W, Zhang Y, Li, K, Wang, H, Yu, S, Yu, T . Diazoxide protects against myocardial ischemia/reperfusion injury by moderating ERS via regulation of the miR-10a/IRE1 pathway. Oxid Med Cell Longev. 2020;2020:4957238. doi:10.1155/2020/4957238.
  • Lucas AMB, de Lacerda Alexandre JV, Araújo MTS, David CEB, Ponte Viana YI, Coelho BN, Caldas, F, Varela, A, Kowaltowski, AJ, Facundo, HT . Diazoxide modulates cardiac hypertrophy by targeting H2O2 generation and mitochondrial superoxide dismutase activity. Curr Mol Pharmacol. 2020;13(1):76–83. doi:10.2174/1874467212666190723144006.
  • Meng Z, Shen B, Gu Y, Wu Z, Yao J, Bian Y, Zeng, D, Chen, K, Cheng, S, Fu, J, et al. Diazoxide ameliorates severity of experimental osteoarthritis by activating autophagy via modulation of the osteoarthritis-related biomarkers. J Cell Biochem. 2018;119(11):8922–36. doi:10.1002/jcb.27145.
  • Bischof JM, Wevrick R.Chronic diazoxide treatment decreases fat mass and improves endurance capacity in an obese mouse model of Prader-Willi syndrome. Mol Genet Metab. 2018;123(4):511–17. doi:10.1016/j.ymgme.2018.02.018.
  • Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk, A, Bae, CY, Quan, Y, Liu, B, et al. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol. 2015;263:161–71. doi:10.1016/j.expneurol.2014.10.003.
  • Zhang H, Wang ZQ, Zhao DY, Zheng DM, Feng J, Song LC, Luo, Y . AIF-mediated mitochondrial pathway is critical for the protective effect of diazoxide against SH-SY5Y cell apoptosis. Brain Res. 2011;1370:89–98. doi:10.1016/j.brainres.2010.11.019.
  • Jia Y, Liu J, Hu H, Duan Q, Chen J, Li L . MiR-363-3p attenuates neonatal hypoxic-ischemia encephalopathy by targeting DUSP5. Neurosci Res. 2021;171:103–13. doi:10.1016/j.neures.2021.03.003.
  • Chen CH, Hsu SY, Chiu CC, Leu S.MicroRNA-21 mediates the protective effect of cardiomyocyte-derived conditioned medium on ameliorating myocardial infarction in rats. Cells. 2019;8(8):935. doi:10.3390/cells8080935.
  • Chen R, Tai Y, Zhang Y, Wang L, Yang Y, Yang N, Ma, S, Xue, F, Wang, J . MicroRNA-21 attenuates oxygen and glucose deprivation induced apoptotic death in human neural stem cells with inhibition of JNK and p38 MAPK signaling. Neurosci Lett. 2019;690:11–16. doi:10.1016/j.neulet.2018.09.060.
  • Liu J, Zhang S, Huang Y, Sun L.MiR-21 protects neonatal rats from hypoxic-ischemic brain damage by targeting CCL3. Apoptosis. 2020;25(3–4):275–89. doi:10.1007/s10495-020-01596-3.
  • Haider KH, Idris NM, Kim HW, Ahmed RP, Shujia J, Ashraf M.MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res. 2010;88(1):168–78. doi:10.1093/cvr/cvq151.
  • Zhou Q, Zhang L.MicroRNA-183-5p protects human derived cell line SH-SY5Y cells from mepivacaine-induced injury. Bioengineered. 2021;12(1):3177–87. doi:10.1080/21655979.2021.1946358.
  • Ding H, Jia Y, Lv H, Chang W, Liu F, Wang D.Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway. J Endocrinol Invest. 2021;44(12):2685–98. doi:10.1007/s40618-021-01583-8.
  • Wang Y, Chang Q.MicroRNA miR-212 regulates PDCD4 to attenuate Aβ(25-35)-induced neurotoxicity via PI3K/AKT signaling pathway in Alzheimer’s disease. Biotechnol Lett. 2020;42(9):1789–97. doi:10.1007/s10529-020-02915-z.
  • Zheng Y, Zhao P, Lian Y, Li S, Chen Y, Li L, et al. MiR-340-5p alleviates oxygen-glucose deprivation/reoxygenation-induced neuronal injury via PI3K/Akt activation by targeting PDCD4. Neurochem Int. 2020;134:104650. doi:10.1016/j.neuint.2019.104650.
  • Li J, Huang L, He Z, Chen M, Ding Y, Yao Y, Duan, Y, Zixuan, L, Qi, C, Zheng, L, et al. Andrographolide suppresses the growth and metastasis of luminal-like breast cancer by inhibiting the NF-κB/miR-21-5p/PDCD4 signaling pathway. Front Cell Dev Biol. 2021;9:643525. doi:10.3389/fcell.2021.643525.
  • Deng CL, Hu CB, Ling ST, Zhao N, Bao LH, Zhou F, Xiong, YC, Chen, T, Sui, BD, Yu, XR, et al. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ. 2021;28(3):1041–61. doi:10.1038/s41418-020-00636-4.
  • Guo Y-B, Ji T-F, Zhou H-W, Yu J-L.Effects of microRNA-21 on nerve cell regeneration and neural function recovery in diabetes mellitus combined with cerebral infarction rats by targeting PDCD4. Mol Neurobiol. 2018;55(3):2494–505. doi:10.1007/s12035-017-0484-8.
  • Higgins RD, Raju T, Edwards AD, Azzopardi DV, Bose CL, Clark RH, Ferriero, DM, Guillet, R, Gunn, AJ, Hagberg, H, et al. Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr. 2011;159(5):851–8.e1. doi:10.1016/j.jpeds.2011.08.004.
  • Tang W, Guo Z-D, Chai W-N, Du D-L, Yang X-M, Cao L, Chen H, Zhou C, Cheng C-J, Sun X-C, et al. Downregulation of miR-491-5p promotes neovascularization after traumatic brain injury. Neural Regen Res. 2022;17(3):577–86. doi:10.4103/1673-5374.314326.
  • Lee KH, Cha M, Lee BH, et al. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci. 2020;21(19): 7152. doi:10.3390/ijms21197152 .
  • Liu W, Zhang G, Sun B, Wang S, Lu Y, Xie H.Activation of NLR family, domain of pyrin containing 3 inflammasome by nitrous oxide through thioredoxin-interacting protein to induce nerve cell injury. Bioengineered. 2021;12(1):4768–79. doi:10.1080/21655979.2021.1954741.
  • Dutta S, Rutkai I, Katakam PV, Busija DW.The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons. J Neurochem. 2015;134(5):845–56. doi:10.1111/jnc.13181.
  • Fu Q, Gao N, Yu J, Ma G, Du Y, Wang F, Su, Q, Che, F . Diazoxide pretreatment prevents Aβ1-42 induced oxidative stress in cholinergic neurons via alleviating NOX2 expression. Neurochem Res. 2014;39(7):1313–21. doi:10.1007/s11064-014-1313-3.
  • Wu H, Wang P, Li Y, Wu M, Lin J, Huang Z . Diazoxide attenuates postresuscitation brain injury in a rat model of asphyxial cardiac arrest by opening mitochondrial ATP-sensitive potassium channels. Biomed Res Int. 2016;2016:1253842. doi:10.1155/2016/1253842.
  • Zhang HS, Liu MF, Ji XY, Jiang CR, Li ZL, OuYang B . Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p. Life Sci. 2019;239:116935. doi:10.1016/j.lfs.2019.116935.
  • Gao J, Chen X, Wei P, Wang Y, Li P, Shao K . Regulation of pyroptosis in cardiovascular pathologies: role of noncoding RNAs. Mol Ther Nucleic Acids. 2021;25:220–36. doi:10.1016/j.omtn.2021.05.016.
  • Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L, Ren, J . Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis. 2017;8(12):3211. doi:10.1038/s41419-017-0047-y.
  • Xian M, Cai J, Zheng K, Liu Q, Liu Y, Lin H, Liang, S, Wang, S, et al. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct. 2021;12(17):8056–67. doi:10.1039/D1FO01144H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.