115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ghrelin ameliorates neuronal damage, oxidative stress, inflammatory parameters, and GFAP expression in traumatic brain injury

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 514-523 | Received 27 May 2023, Accepted 22 Feb 2024, Published online: 03 Mar 2024

References

  • Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehab. 2010;91(11):1637–1640. doi:10.1016/j.apmr.2010.05.017.
  • WHO. Neurological disorders: public health challenges. Geneva: World Health Organization; 2006.
  • Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–741. doi:10.1016/S1474-4422(08)70164-9.
  • Rincon S, Gupta R, Ptak T. Imaging of head trauma. Handb Clin Neurol. 2016;135:447–77.
  • Lamade AM, Anthonymuthu TS, Hier ZE, Gao Y, Kagan VE, Bayır H. Mitochondrial damage & lipid signaling in traumatic brain injury. Exp Neurol. 2020;329:113307. doi:10.1016/j.expneurol.2020.113307.
  • Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2018;16(8):1224–1238. doi:10.2174/1570159X15666170613083606.
  • Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma. 2015;32(23):1861–1882. doi:10.1089/neu.2014.3680.
  • Kabadi SV, Faden AI. Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci. 2014;15(1):1216–1236. doi:10.3390/ijms15011216.
  • Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(7):2320–2339. doi:10.1177/0271678X17701460.
  • Kojima M, Hosoda H, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60. doi:10.1038/45230.
  • Ergul Erkec O, Yunusoglu O, Huyut Z. Evaluation of repeated ghrelin administration on seizures, oxidative stress and neurochemical parameters in pentyleneterazole induced kindling in rats. Int J Neurosci. 2022;1–9. doi:10.1080/00207454.2022.2107516.
  • Erşahin M, Toklu HZ, Erzik C, Çetinel Ş, Akakin D, Velioğlu-Öğünç A, Yeğen BÇ, Özdemir ZN, Şener G, Yeğen BÇ. The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma. 2010;27(6):1143–55. doi:10.1089/neu.2009.1210.
  • Oztas B, Sahin D, Kir H, Eraldemir FC, Musul M, Kuskay S, Ates N. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Alpha, Il-1beta, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model. Neuropeptides. 2017;61:31–37. doi:10.1016/j.npep.2016.08.002.
  • Lopez NE, Gaston L, Lopez K, Coimbra R, Hageny A, Putnam J, Eliceiri B, Coimbra R, Bansal V. Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Res. 2012;1489:140–148. doi:10.1016/j.brainres.2012.10.031.
  • Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny A-M, Eliceiri B, Coimbra R, Bansal V. Ghrelin prevents disruption of the blood–brain barrier after traumatic brain injury. J Neurotrauma. 2012;29(2):385–393. doi:10.1089/neu.2011.2053.
  • Qi L, Cui X, Dong W, Barrera R, Coppa GF, Wang P, Wu R. Ghrelin protects rats against traumatic brain injury and hemorrhagic shock through upregulation of UCP2. Ann Surg. 2014;260(1):169–178. doi:10.1097/SLA.0000000000000328.
  • Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal. 2013;19(8):836–853. doi:10.1089/ars.2012.4981.
  • Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:1–23. doi:10.1155/2016/3164734.
  • Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history trade‐offs: mechanisms, measurements and interpretation. Ecol Lett. 2009;12(1):75–92. doi:10.1111/j.1461-0248.2008.01258.x.
  • Lee KH, Cha M, Lee BH. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci. 2020;21(19):7152. doi:10.3390/ijms21197152.
  • Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Park TI, Faull RLM, Curtis MA, Park TI-H. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016;13(1):1–15. doi:10.1186/s12974-016-0503-0.
  • Ozen I, Ruscher K, Nilsson R, Flygt J, Clausen F, Marklund N. Interleukin-1 Beta Neutralization Attenuates Traumatic Brain Injury-Induced Microglia Activation and Neuronal Changes in the Globus Pallidus. Int J Mol Sci. 2020;21(2):387. doi:10.3390/ijms21020387.
  • Kushi H, Saito T, Makino K, Hayashi N (2003). L-8 is a key mediator of neuroinflammation in severe traumatic brain injuries. Paper presented at the Brain Edema XII: Proceedings of the 12 th International Symposium, Hakone, Japan, November 10–13, 2002.
  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211(1):67–77. doi:10.1016/0006-8993(81)90067-6.
  • Gülşen İ, Ak H, Çölçimen N, Alp HH, Akyol ME, Demir I, Rağbetli MÇ, Balahroğlu R, Rağbetli MÇ. Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurg. 2016;86:243–49. doi:10.1016/j.wneu.2015.09.052.
  • Kola PK, Akula A, NissankaraRao LS, Danduga R. Protective effect of naringin on pentylenetetrazole (PTZ)-induced kindling; possible mechanisms of antikindling, memory improvement, and neuroprotection. Epilepsy Behav. 2017;75:114–126. doi:10.1016/j.yebeh.2017.07.011.
  • Ceylani T, Teker H Taner, Keskin S, Samgane G, Acikgoz E and Gurbanov R. The rejuvenating influence of young plasma on aged intestine. J Cellular Molecular Medi. 2023;27(18), 2804–2816. doi: 10.1111/jcmm.17926.
  • Atkins CM. Decoding hippocampal signaling deficits after traumatic brain injury. Transl Stroke Res. 2011;2(4):546–555. doi:10.1007/s12975-011-0123-z.
  • Girgis F, Pace J, Sweet J, Miller JP. Hippocampal neurophysiologic changes after mild traumatic brain injury and potential neuromodulation treatment approaches. Front Syst Neurosci. 2016;10:8. doi:10.3389/fnsys.2016.00008.
  • Bennett MH, Trytko B, Jonker B. Hyperbaric oxygen therapy for the adjunctive treatment of traumatic brain injury. Cochrane Db Syst Rev. 2012. doi:10.1002/14651858.CD004609.pub3.
  • Yi J-H, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48(5):394–403. doi:10.1016/j.neuint.2005.12.001.
  • Baracaldo-Santamaría D, Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernandez-Duarte I, Calderon-Ospina C-A. Revisiting excitotoxicity in traumatic brain injury: from bench to bedside. Pharmaceutics. 2022;14(1):152. doi:10.3390/pharmaceutics14010152.
  • Wang J, Wang F, Mai D, Qu S. Molecular mechanisms of glutamate toxicity in Parkinson’s disease. Front Neurosci. 2020;14:585584. doi:10.3389/fnins.2020.585584.
  • Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13:528. doi:10.3389/fncel.2019.00528.
  • Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK. Oxidative stress: Major threat in traumatic brain injury. CNS Neurol Disord Drug Targets. 2018;17(9):689–695. doi:10.2174/1871527317666180627120501.
  • Lorente L. New prognostic biomarkers in patients with traumatic brain injury. Arch Trauma Res. 2015;4(4). doi:10.5812/atr.30165.
  • Sun N, Wang H, Ma L, Lei P, Zhang Q. Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res Bull. 2016;124:278–285. doi:10.1016/j.brainresbull.2016.06.002.
  • Sun J, Li X, Gu X, Du H, Zhang G, Wu J, Wang F. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany NY). 2021;13(5):7180. doi:10.18632/aging.202575.
  • Lee S, Kim Y, Li E, Park S. Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation. The Korean Journal Of Physiology & Pharmacology. 2012;16(1):43–48. doi:10.4196/kjpp.2012.16.1.43.
  • Lim E, Lee S, Li E, Kim Y, Park S. Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways. Exp Neurol. 2011;230(1):114–122. doi:10.1016/j.expneurol.2011.04.003.
  • García-Cáceres C, Argente-Arizón P, Díaz F, Freire-Regatillo M, Granado A, Castro-González D, Argente J, Ceballos ML, Frago LM, Dickson SL. Ghrelin regulates glucose and glutamate transporters in hypothalamic astrocytes. Sci Rep. 2016;6(1):1–15. doi:10.1038/srep23673.
  • Zhang L, Wang H. Targeting the NF-E2-related factor 2 pathway: a novel strategy for traumatic brain injury. Mol Neurobiol. 2018;55(2):1773–1785. doi:10.1007/s12035-017-0456-z.
  • Kossmann T, Stahel PF, Lenzlinger PM, Redl H, Dubs RW, Trentz O, Morganti-Kossmann MC, Morganti-Kossmann MC. Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood–brain barrier dysfunction and nerve growth factor production. J Cereb Blood Flow Metab. 1997;17(3):280–89. doi:10.1097/00004647-199703000-00005.
  • Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A. Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PloS One. 2014;9(10):e110024. doi:10.1371/journal.pone.0110024.
  • Hasturk AE, Yilmaz ER, Turkoglu E, Kertmen H, Horasanli B, Hayirli N, Erguder IB, Evirgen O. Therapeutic evaluation of interleukin 1-beta antagonist Anakinra against traumatic brain injury in rats. Ulus Travma Acil Cerrahi Derg. 2015;21(1):1–8. doi:10.5505/tjtes.2015.57894.
  • Tylicka M, Matuszczak E, Hermanowicz A, Dębek W, Karpińska M, Kamińska J, Koper-Lenkiewicz OM. BDNF and IL-8, but not UCHL-1 and IL-11, are markers of brain injury in children caused by mild head trauma. Brain Sci. 2020;10(10):665. doi:10.3390/brainsci10100665.
  • Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H, Roth J, Wang P, Roth J. Ghrelin as an anti-sepsis peptide. Front Immunol. 2021;11:610363. doi:10.3389/fimmu.2020.610363.
  • Davis CK, Vemuganti R. Antioxidant therapies in traumatic brain injury. Neurochem Int. 2022;152:105255. doi:10.1016/j.neuint.2021.105255.
  • Yuan J, Wang D, Liu Y, Chen X, Zhang H, Shen F, Liu J, Fu J. Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J Surg Res. 2018;228:238–246. doi:10.1016/j.jss.2018.03.024.
  • Lee J, Lim E, Kim Y, Li E, Park S. Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Endocrinol. 2010;205(3):263–270. doi:10.1677/JOE-10-0040.
  • Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. The Journal Of Pathology: A Journal Of The Pathological Society Of Great Britain And Ireland. 2004;204(4):428–437. doi:10.1002/path.1645.
  • Zhang S, Wu M, Peng C, Zhao G, Gu R. GFAP expression in injured astrocytes in rats. Exp Ther Med. 2017;14(3):1905–1908. doi:10.3892/etm.2017.4760.
  • Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275:316–327. doi:10.1016/j.expneurol.2015.08.018.
  • Frago LM, Chowen JA. Involvement of astrocytes in mediating the central effects of ghrelin. Int J Mol Sci. 2017;18(3):536. doi:10.3390/ijms18030536.
  • Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018;18(2):165–180. doi:10.1080/14737159.2018.1428089.
  • Garin MC, Burns CM, Kaul S, Cappola AR. Clinical review: the human experience with ghrelin administration. J Clin Endocrinol Metab. 2013;98(5):1826–1837. doi:10.1210/jc.2012-4247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.