151
Views
2
CrossRef citations to date
0
Altmetric
Articles

Accelerometer-Based Physical Activity Assessment During Intermittent Conditions: Effect of Epoch Length on Energy Expenditure Estimate

ORCID Icon, ORCID Icon & ORCID Icon
Pages 202-209 | Received 10 Aug 2020, Accepted 13 Jul 2021, Published online: 22 Mar 2022

References

  • Aibar, A., & Chanal, J. (2015). Physical education: The effect of epoch lengths on children’s physical activity in a structured context. PloS One, 10(4), e0121238. https://doi.org/10.1371/journal.pone.0121238
  • Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-locke, C., Greer, J. L., Vezina, J., Whitt-glover, M. C., & Leon, A. S. (2011). 2011 compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12
  • Baquet, G., Stratton, G., Van Praagh, E., & Berthoin, S. (2007). Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: A methodological issue. Preventive Medicine, 44(2), 143–147. https://doi.org/10.1016/j.ypmed.2006.10.004
  • Borsheim, E., & Bahr, R. (2003). Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Medicine, 33(14), 1037–1060. https://doi.org/10.2165/00007256-200333140-00002
  • Brown, D. M., Dwyer, D. B., Robertson, S. J., & Gastin, P. B. (2016). Metabolic power method: Underestimation of energy expenditure in field-sport movements using a global positioning system tracking system. International Journal of Sports Physiology and Performance, 11(8), 1067–1073. https://doi.org/10.1123/ijspp.2016-0021
  • Ceaser, T. G. (2012). The estimation of caloric expenditure using three triaxial acceleromters. [ PhD], University of Tenesseee.
  • Crouter, S. E., Churilla, J. R., & Bassett, D. R., Jr. (2006). Estimating energy expenditure using accelerometers. European Journal of Applied Physiology, 98(6), 601–612. https://doi.org/10.1007/s00421-006-0307-5
  • Fabre, N., Lhuisset, L., Bernal, C., & Bois, J. (2020). Effect of epoch length on intensity classification and on accuracy of measurement under controlled conditions on treadmill: Towards a better understanding of accelerometer measurement. PLoS One, 15(1), e0227740. https://doi.org/10.1371/journal.pone.0227740
  • Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, inc. accelerometer. Medicine & Science in Sports & Exercise, 30(5), 777–781. https://doi.org/10.1097/00005768-199805000-00021
  • Gaesser, G. A., & Brooks, G. A. (1984). Metabolic bases of excess post-exercise oxygen consumption: A review. Medicine & Science in Sports & Exercise, 16(1), 29–43. https://doi.org/10.1249/00005768-198401000-00008
  • Gastin, P. B., Cayzer, C., Dwyer, D., & Robertson, S. (2018). Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. Journal of Science and Medicine in Sport, 21(3), 291–295. https://doi.org/10.1016/j.jsams.2017.07.022
  • Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine & Science in Sports & Exercise, 32(Supplement), S442–449. https://doi.org/10.1097/00005768-200009001-00002
  • John, D., Tyo, B., & Bassett, D. R. (2010). Comparison of four ActiGraph accelerometers during walking and running. Medicine & Science in Sports & Exercise, 42(2), 368–374. https://doi.org/10.1249/MSS.0b013e3181b3af49
  • Matthew, C. E. (2005). Calibration of accelerometer output for adults. Medicine & Science in Sports & Exercise, 37(11), S512–522. https://doi.org/10.1249/01.mss.0000185659.11982.3d
  • Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J. R., & Ortega, F. B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 1821–1845. https://doi.org/10.1007/s40279-017-0716-0
  • Orme, M., Wijndaele, K., Sharp, S. J., Westgate, K., Ekelund, U., & Brage, S. (2014). Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 34. https://doi.org/10.1186/1479-5868-11-34
  • Sagelv, E. H., Ekelund, U., Pedersen, S., Brage, S., Hansen, B. H., Johansson, J., Grimsgaard, S., Nordström, A., Horsch, A., Hopstock, L. A., & Morseth, B. (2019). Physical activity levels in adults and elderly from triaxial and uniaxial accelerometry. The tromso study. PLoS One, 14(12), e0225670. https://doi.org/10.1371/journal.pone.0225670
  • Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181–188. https://doi.org/10.1249/mss.0b013e31815a51b3
  • Trost, S. G. (2001). Objective measurement of physical activity in youth: Current issues, future directions. Exercise and Sport Sciences Reviews, 29(1), 32–36. https://doi.org/10.1097/00003677-200101000-00007
  • Trost, S. G., Ward, D. S., Moorehead, S. M., Watson, P. D., Riner, W., & Burke, J. R. (1998). Validity of the computer science and applications (CSA) activity monitor in children. Medicine and Science in Sports and Exercise, 30(4), 629–633. https://doi.org/10.1097/00005768-199804000-00023
  • Tudor-Locke, C., Han, H., Aguiar, E. J., Barreira, T. V., Schuna, J. M., Jr., Kang, M., & Rowe, D. A. (2018). How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: A narrative review. British Journal of Sports Medicine, 52(12), 776–788. https://doi.org/10.1136/bjsports-2017-097628
  • Welk, G. J. (2005). Principles of design and analyses for the calibration of accelerometry-based activity monitors. Medicine & Science in Sports & Exercise, 37(11), S501–511. https://doi.org/10.1249/01.mss.0000185660.38335.de
  • Welk, G. J., Blair, S. N., Wood, K., Jones, S., & Thompson, R. W. (2000). A comparative evaluation of three accelerometry-based physical activity monitors. Medicine & Science in Sports & Exercise, 32(Suppl.), S489–497. https://doi.org/10.1097/00005768-200009001-00008
  • William R Kcal estimates from activity counts using the Potential Energy Method. (1998). ActiGraph, LLC. Retrieved April 16, 2019, from https://actigraphcorp.com/research-database/kcal-estimates-from-activity-counts-using-the-potential-energy-method
  • Yngve, A., Nilsson, A., Sjostrom, M., & Ekelund, U. (2003). Effect of monitor placement and of activity setting on the MTI accelerometer output. Medicine & Science in Sports & Exercise, 35(2), 320–326. https://doi.org/10.1249/01.MSS.0000048829.75758.A0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.