398
Views
1
CrossRef citations to date
0
Altmetric
Pages 1020-1027 | Received 13 Jan 2022, Accepted 03 Jul 2022, Published online: 01 Sep 2022

References

  • Adami, A., Cao, R., Porszasz, J., Casaburi, R., & Rossiter, H. B. (2017). Reproducibility of NIRS assessment of muscle oxidative capacity in smokers with and without COPD. Respiratory Physiology & Neurobiology, 235, 18–26. https://doi.org/10.1016/j.resp.2016.09.008
  • Adami, A., & Rossiter, H. B. (2018). Principles, insights, and potential pitfalls of the noninvasive determination of muscle oxidative capacity by near-infrared spectroscopy. Journal of Applied Physiology, 124(1), 245–248. https://doi.org/10.1152/japplphysiol.00445.2017
  • Akça, F. (2014). Prediction of rowing ergometer performance from functional anaerobic power, strength and anthropometric components. Journal of Human Kinetics, 41(1), 133–142. https://doi.org/10.2478/hukin-2014-0041
  • Barstow, T. J. (2019). Understanding near infrared spectroscopy and its application to skeletal muscle research. Journal of Applied Physiology, 126(5), 1360–1376. https://doi.org/10.1152/japplphysiol.00166.2018
  • Batterson, P. M., Norton, M. R., Hetz, S. E., Rohilla, S., Lindsay, K. G., Subudhi, A. W., & Jacobs, R. A. (2020). Improving biologic predictors of cycling endurance performance with near-infrared spectroscopy derived measures of skeletal muscle respiration: E pluribus unum. Physiological Reports, 8(2), e14342. https://doi.org/10.14814/phy2.14342
  • Beever, A. T., Tripp, T. R., Zhang, J., & MacInnis, M. J. (2020). NIRS-derived skeletal muscle oxidative capacity is correlated with aerobic fitness and independent of sex. Journal of Applied Physiology, 129(3), 558–568. https://doi.org/10.1152/japplphysiol.00017.2020
  • Bellinger, P. M., Sabapathy, S., Craven, J., Arnold, B., & Minahan, C. (2020). Overreaching attenuates training induced improvements in muscle oxidative capacity. Medicine & Science in Sports & Exercise, 52(1), 77–85. https://doi.org/10.1249/MSS.0000000000002095
  • Beneke, R. (1995). Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Medicine & Science in Sports & Exercise, 27(6), 863–867. https://doi.org/10.1249/00005768-199506000-00010
  • Beneke, R. (2003a). Methodological aspects of maximal lactate steady state-implications for performance testing. European Journal of Applied Physiology, 89(1), 95–99. https://doi.org/10.1007/s00421-002-0783-1
  • Beneke, R. (2003b). Maximal lactate steady state concentration (MLSS): Experimental and modelling approaches. European Journal of Applied Physiology, 88(4–5), 361–369. https://doi.org/10.1007/s00421-002-0713-2
  • Blomstrand, E., Rådegran, G., & Saltin, B. (1997). Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle. The Journal of Physiology, 501(2), 455–460. https://doi.org/10.1111/j.1469-7793.1997.455bn.x
  • Bourdin, M., Messonnier, L., Hager, J. P., & Lacour, J. R. (2004). Peak power output predicts rowing ergometer performance in elite male rowers. International Journal of Sports Medicine, 25(5), 368–373. https://doi.org/10.1055/s-2004-815844
  • Brizendine, J. T., Ryan, T. E., Larson, R. D., & McCully, K. K. (2013). Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy. Medicine and Science in Sports and Exercise, 45(5), 869–875. https://doi.org/10.1249/MSS.0b013e31827e0eb6
  • de Aguiar, R. A., Turnes, T., Borszcz, F. K., Raimundo, J. A. G., & Caputo, F. (2022). Near-infrared spectroscopy-derived muscle VO2 kinetics after moderate running exercise in healthy males: Reliability and associations with parameters of aerobic fitness. Experimental Physiology, 107(5), 476–488. https://doi.org/10.1113/EP090105
  • de Campos Mello, F., de Moraes Bertuzzi, R. C., Grangeiro, P. M., & Franchini, E. (2009). Energy systems contributions in 2,000 m race simulation: A comparison among rowing ergometers and water. European Journal of Applied Physiology, 107(5), 615–619. https://doi.org/10.1007/s00421-009-1172-9
  • Erickson, M. L., Ryan, T. E., Young, H. J., & McCully, K. K. (2013). Near-infrared assessments of skeletal muscle oxidative capacity in persons with spinal cord injury. European Journal of Applied Physiology, 113(9), 2275–2283. https://doi.org/10.1007/s00421-013-2657-0
  • Erickson, M. L., Ryan, T. E., Backus, D., & McCully, K. K. (2017). Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle & Nerve, 55(5), 669–675. https://doi.org/10.1002/mus.25393
  • Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
  • Granata, C., Jamnick, N. A., & Bishop, D. J. (2018). Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Medicine, 48(8), 1809–1828. https://doi.org/10.1007/s40279-018-0936-y
  • Guellich, A., Seiler, S., & Emrich, E. (2009). Training methods and intensity distribution of young world-class rowers. International Journal of Sports Physiology and Performance, 4(4), 448–460. https://doi.org/10.1123/ijspp.4.4.448
  • Guzman, S., Ramirez, J., Keslacy, S., de Leon, R., Yamazaki, K., & Dy, C. (2020). Association between muscle aerobic capacity and whole-body peak oxygen uptake. European Journal of Applied Physiology, 120(9), 2029–2036. https://doi.org/10.1007/s00421-020-04402-9
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Iannetta, D., Qahtani, A., Millet, G. Y., & Murias, J. M. (2017). Quadriceps muscles O2 extraction and EMG breakpoints during a ramp incremental test. Frontiers in Physiology, 8, Article 686. https://doi.org/10.3389/fphys.2017.00686
  • Ingham, S. A., Whyte, G. P., Jones, K., & Nevill, A. M. (2002). Determinants of 2,000 m rowing ergometer performance in elite rowers. European Journal of Applied Physiology, 88(3), 243–246. https://doi.org/10.1007/s00421-002-0699-9
  • Ivy, J. L., Withers, R. T., Van Handel, P. J., Elger, D. H., & Costill, D. L. (1980). Muscle respiratory capacity and fiber type as determinants of the lactate threshold. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 48(3), 523–527. https://doi.org/10.1152/jappl.1980.48.3.523
  • Jacobs, R. A., & Lundby, C. (2013). Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Journal of Applied Physiology, 114(3), 344–350. https://doi.org/10.1152/japplphysiol.01081.2012
  • Lagerwaard, B., Keijer, J., McCully, K. K., de Boer, V. C., & Nieuwenhuizen, A. G. (2019). In vivo assessment of muscle mitochondrial function in healthy, young males in relation to parameters of aerobic fitness. European Journal of Applied Physiology, 119(8), 1799–1808. https://doi.org/10.1007/s00421-019-04169-8
  • Lamarra, N., Whipp, B. J., Ward, S. A., & Wasserman, K. (1987). Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. Journal of Applied Physiology, 62(5), 2003–2012. https://doi.org/10.1152/jappl.1987.62.5.2003
  • Lundby, C., & Jacobs, R. A. (2016). Adaptations of skeletal muscle mitochondria to exercise training. Experimental Physiology, 101(1), 17–22. https://doi.org/10.1113/EP085319
  • Lundby, C., Montero, D., & Joyner, M. (2017). Biology of VO2max: Looking under the physiology lamp. Acta Physiologica, 220(2), 218–228. https://doi.org/10.1111/apha.12827
  • McCully, K. K., Boden, B. P., Tuchler, M., Fountain, M. R., & Chance, B. (1989). Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy. Journal of Applied Physiology, 67(3), 926–932. https://doi.org/10.1152/jappl.1989.67.3.926
  • Nasseri, N., Kleiser, S., Ostojic, D., Karen, T., & Wolf, M. (2016). Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy. Biomedical Optics Express, 7(11), 4605–4619. https://doi.org/10.1364/BOE.7.004605
  • Nevill, A. M., Beech, C., Holder, R. L., & Wyon, M. (2010). Scaling concept II rowing ergometer performance for differences in body mass to better reflect rowing in water. Scandinavian Journal of Medicine & Science in Sports, 20(1), 122–127. https://doi.org/10.1111/j.1600-0838.2008.00874.x
  • Possamai, L. T., Borszcz, F. K., de Aguiar, R. A., de Lucas, R. D., & Turnes, T. (2021). Agreement of maximal lactate steady state with critical power and physiological thresholds in rowing. European Journal of Sport Science, 22(3), 371–380. https://doi.org/10.1080/17461391.2021.1874541
  • Ryan, T. E., Brophy, P., Lin, C. T., Hickner, R. C., & Neufer, P. D. (2014). Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: A comparison with in situ measurements. The Journal of Physiology, 592(15), 3231–3241. https://doi.org/10.1113/jphysiol.2014.274456
  • Ryan, T. E., Erickson, M. L., Brizendine, J. T., Young, H. J., & McCully, K. K. (2012). Noninvasive evaluation of skeletal muscle mitochondrial capacity with nearinfrared spectroscopy: Correcting for blood volume changes. Journal of Applied Physiology, 113(2), 175–183. https://doi.org/10.1152/japplphysiol.00319.2012
  • Ryan, T. E., Southern, W. M., Reynolds, M. A., & McCully, K. K. (2013). A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. Journal of Applied Physiology, 115(12), 1757–1766. https://doi.org/10.1152/japplphysiol.00835.2013
  • Sanni, A. A., & McCully, K. K. (2019). Interpretation of Near-Infrared Spectroscopy (NIRS) signals in skeletal muscle. Journal of Functional Morphology and Kinesiology, 4(2), 28. https://doi.org/10.3390/jfmk4020028
  • Smith, T. B., & Hopkins, W. G. (2012). Measures of rowing performance. Sports Medicine, 42(4), 343–358. https://doi.org/10.2165/11597230-000000000-00000
  • Southern, W. M., Ryan, T. E., Reynolds, M. A., & McCully, K. K. (2014). Reproducibility of near-infrared spectroscopy measurements of oxidative function and postexercise recovery kinetics in the medial gastrocnemius muscle. Applied Physiology, Nutrition and Metabolism, 39(5), 521–529. https://doi.org/10.1139/apnm-2013-0347
  • Turnes, T., Possamai, L. T., Penteado Dos Santos, R., de Aguiar, R. A., Ribeiro, G., & Caputo, F. (2020). Mechanical power during an incremental test can be estimated from 2000-m rowing ergometer performance. The Journal of Sports Medicine and Physical Fitness, 60(2), 214–219. https://doi.org/10.23736/S0022-4707.19.09967-5
  • Turpin, N. A., Guevel, A., Durand, S., & Hug, F. (2011). Effect of power output on muscle coordination during rowing. European Journal of Applied Physiology, 111(12), 3017–3029. https://doi.org/10.1007/s00421-011-1928-x
  • Van Beekvelt, M. C., Borghuis, M. S., Van Engelen, B. G., Wevers, R. A., & Colier, W. N. (2001). Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clinical Science, 101(1), 21–28. https://doi.org/10.1042/cs20000247
  • van der Zwaard, S., de Ruiter, C. J., Noordhof, D. A., Sterrenburg, R., Bloemers, F. W., de Koning, J. J., Jaspers, R. T., & van der Laarse, W. J. (2016). Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists. Journal of Applied Physiology, 121(3), 636–645. https://doi.org/10.1152/japplphysiol.00355.2016
  • van der Zwaard, S., Weide, G., Levels, K., Eikelboom, M. R. I., Noordhof, D. A., Hofmijster, M. J., van der Laarse, W. J., de Koning, J. J., de Ruiter, C. J., & Jaspers, R. T. (2018). Muscle morphology of the vastus lateralis is strongly related to ergometer performance, sprint capacity and endurance capacity in Olympic rowers. Journal of Sports Sciences, 36(18), 2111–2120. https://doi.org/10.1080/02640414.2018.1439434
  • Zuccarelli, L., Do Nascimento Salvador, P. C., Del Torto, A., Fiorentino, R., & Grassi, B. (2020). Skeletal muscle Vo2 kinetics by the NIRS repeated occlusions method during the recovery from cycle ergometer exercise. Journal of Applied Physiology, 128(3), 534–544. https://doi.org/10.1152/japplphysiol.00580.2019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.