415
Views
8
CrossRef citations to date
0
Altmetric
Articles

The Hypoalgesic Effect of Low-Load Exercise to Failure Is Not Augmented by Blood Flow Restriction

Pages 1084-1093 | Received 08 Jun 2022, Accepted 16 Aug 2022, Published online: 12 Sep 2022

References

  • Aicher, S. A., & Randich, A. (1990). Antinociception and cardiovascular responses produced by electrical stimulation in the nucleus tractus solitarius, nucleus reticularis ventralis, and the caudal medulla. Pain, 42(1), 103–119. https://doi.org/10.1016/0304-3959(90)91096-2
  • Al’Absi, M., & Petersen, K. L. (2003). Blood pressure but not cortisol mediates stress effects on subsequent pain perception in healthy men and women. Pain, 106(3), 285–295. https://doi.org/10.1016/S0304-3959(03)00300-2
  • Bossut, D. F., & Maixner, W. (1996). Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain, 65(1), 101–109. https://doi.org/10.1016/0304-3959(95)00166-2
  • Bruehl, S., & Chung, O. Y. (2004). Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neuroscience & Biobehavioral Reviews, 28(4), 395–414. https://doi.org/10.1016/j.neubiorev.2004.06.004
  • Brümmer, V., Schneider, S., Strüder, H. K., & Askew, C. D. (2011). Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience, 181, 150–162. https://doi.org/10.1016/j.neuroscience.2011.02.006
  • Chesterton, L. S., Barlas, P., Foster, N. E., Baxter, G. D., & Wright, C. C. (2003). Gender differences in pressure pain threshold in healthy humans. Pain, 101(3), 259–266. https://doi.org/10.1016/S0304-3959(02)00330-5
  • D’Antono, B., Ditto, B., Sita, A., & Miller, S. B. (2000). Cardiopulmonary baroreflex stimulation and blood pressure-related hypoalgesia. Biological Psychology, 53(2–3), 217–231. https://doi.org/10.1016/S0301-0511(00)00044-2
  • Dankel, S. J., Jessee, M. B., Mattocks, K. T., Buckner, S. L., Mouser, J. G., Bell, Z. W., Abe, T., & Loenneke, J. P. (2019). Perceptual and arterial occlusion responses to very low load blood flow restricted exercise performed to volitional failure. Clinical Physiology and Functional Imaging, 39(1), 29–34. https://doi.org/10.1111/cpf.12535
  • Dankel, S. J., Mattocks, K. T., Jessee, M. B., Buckner, S. L., Mouser, J. G., Counts, B. R., Laurentino, G. C., & Loenneke, J. P. (2017). Frequency: The overlooked resistance training variable for inducing muscle hypertrophy? Sports Medicine, 47(5), 799–805. https://doi.org/10.1007/s40279-016-0640-8
  • Drury, D. G., Stuempfle, K., Shannon, R., & Miller, J. (2004). An investigation of exercise-induced hypoalgesia after isometric and cardiovascular exercise. Journal of Exercise Physiology, 7(4), 1–5. https://cupola.gettysburg.edu/healthfac/31/
  • Ellingson, L. D., Koltyn, K. F., Kim, J. S., & Cook, D. B. (2014). Does exercise induce hypoalgesia through conditioned pain modulation? Psychophysiology, 51(3), 267–276. https://doi.org/10.1111/psyp.12168
  • Hirayama, A., Saitoh, Y., Kishima, H., Shimokawa, T., Oshino, S., Hirata, M., Kato, A., & Yoshimine, T. (2006). Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex. Pain, 122(1–2), 22–27. https://doi.org/10.1016/j.pain.2005.12.001
  • Hoeger-Bement, M. K., Dicapo, J., Rasiarmos, R., & Hunter, S. K. (2008). Dose response of isometric contractions on pain perception in healthy adults. Medicine & Science in Sports & Exercise, 40(11), 1880–1889. https://doi.org/10.1249/MSS.0b013e31817eeecc
  • Hughes, L., Grant, I., & Patterson, S. D. (2021). Aerobic exercise with blood flow restriction causes local and systemic hypoalgesia and increases circulating opioid and endocannabinoid levels. Journal of Applied Physiology, 131(5), 1460–1468. https://doi.org/10.1152/japplphysiol.00543.2021
  • Hughes, L., & Patterson, S. D. (2019). Low intensity blood flow restriction exercise: Rationale for a hypoalgesia effect. Medical Hypotheses [Internet], 132(August), 109370. https://doi.org/10.1016/j.mehy.2019.109370
  • Hughes, L., & Patterson, S. D. (2020). The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. Journal of Applied Physiology, 128(4), 914–924. https://doi.org/10.1152/japplphysiol.00768.2019
  • Jessee, M. B., Buckner, S. L., Grant Mouser, J., Mattocks, K. T., Dankel, S. J., Abe, T., Bell, Z. W., Bentley, J. P., & Loenneke, J. P. (2018). Muscle adaptations to high-load training and very low-load training with and without blood flow restriction. Frontiers in Physiology, 9(1448), 1–11. https://doi.org/10.3389/fphys.2018.01448
  • Jessee, M. B., Mattocks, K. T., Buckner, S. L., Dankel, S. J., Mouser, J. G., Abe, T., & Loenneke, J. P. (2018). Mechanisms of blood flow restriction: The New Testament. Techniques in Orthopaedics, 33(2), 72–79. https://doi.org/10.1097/BTO.0000000000000252
  • Keilman, B. M., Hanney, W. J., Kolber, M. J., Pabian, P. S., Salamh, P. A., Rothschild, C, E., & Liu, X. (2017). The short-term effect of kettlebell swings on Lumbopelvic pressure pain thresholds: A randomized controlled trial. Journal of Strength and Conditioning Research, 31(11), 3001–3009. https://doi.org/10.1519/JSC.0000000000001743
  • Kennedy, D. L., Kemp, H. I., Ridout, D., Yarnitsky, D., & Rice, A. S. C. (2016). Reliability of conditioned pain modulation: A systematic review. Pain, 157(11), 2410–2419. https://doi.org/10.1097/j.pain.0000000000000689
  • Koltyn, K. F. (2000). Analgesia following exercise: A review. Sports Medicine, 29(2), 85–98. https://doi.org/10.2165/00007256-200029020-00002
  • Koltyn, K. F., & Arbogast, R. W. (1998). Perception of pain after resistance exercise. British Journal of Sports Medicine, 32(1), 20–24. https://doi.org/10.1136/bjsm.32.1.20
  • Koltyn, K. F., Brellenthin, A. G., Cook, D. B., Sehgal, N., & Hillard, C. (2014). Mechanisms of exercise-induced hypoalgesia. The Journal of Pain, 15(12), 1294–1304. https://doi.org/10.1016/j.jpain.2014.09.006
  • Koltyn, K. F., & Umeda, M. (2006). Exercise, hypoalgesia and blood pressure. Sports Medicine, 36(3), 207–214. https://doi.org/10.2165/00007256-200636030-00003
  • Korakakis, V., Whiteley, R., & Epameinontidis, K. (2018). Blood flow restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Physical Therapy in Sport, 32, 235–243. https://doi.org/10.1016/j.ptsp.2018.05.021
  • Korakakis, V., Whiteley, R., & Giakas, G. (2018). Low load resistance training with blood flow restriction decreases anterior knee pain more than resistance training alone. A pilot randomised controlled trial. Physical Therapy in Sport, 34, 121–128. https://doi.org/10.1016/j.ptsp.2018.09.007
  • Loenneke, J. P., Wilson, J. M., Marín, P. J., Zourdos, M. C., & Bemben, M. G. (2012). Low intensity blood flow restriction training: A meta-analysis. European Journal of Applied Physiology, 112(5), 1849–1859. https://doi.org/10.1007/s00421-011-2167-x
  • Makovac, E., Porciello, G., Palomba, D., Basile, B., & Ottaviani, C. (2020). Blood pressure-related hypoalgesia: A systematic review and meta-analysis. Journal of Hypertension, 38(1), 1–16. https://doi.org/10.1097/HJH.0000000000002427
  • Mattocks, K. T., Jessee, M. B., Counts, B. R., Buckner, S. L., Grant Mouser, J., Dankel, S. J., Laurentino, G. C., & Loenneke, J. P. (2017). The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiology & Behavior, 171, 181–186. https://doi.org/10.1016/j.physbeh.2017.01.015
  • Misra, G., Paris, T. A., Archer, D. B., Coombes, S. A., & Tremblay, F. (2014). Dose-response effect of isometric force production on the perception of pain. PLoS One [Internet], 9(2), e88105. https://doi.org/10.1371/journal.pone.0088105
  • Montoya, A. K., & Hayes, A. F. (2016). Two-condition within-participant statistical mediation analysis: A path-analytic framework. Psychological Methods, 22(1), 6–27. https://doi.org/10.1037/met0000086
  • Motykie, G. D., Zebala, L. P., Caprini, J. A., Lee, C. E., Arcelus, J. I., Reyna, J. J., & Cohen, E. B. (2000). A guide to venous thromboembolism risk factor assessment. Journal of Thrombosis and Thrombolysis, 9(3), 253–262. https://doi.org/10.1023/A:1018770712660
  • Post, M., Steens, A., Renken, R., Maurits, N. M., & Zijdewind, I. (2009). Voluntary activation and cortical activity during a sustained maximal contraction: An fMRI study. Human Brain Mapping, 30(3), 1014–1027. https://doi.org/10.1002/hbm.20562
  • Randich, A., & Maixner, W. (1984). Interactions between cardiovascular and pain regulatory systems. Neuroscience & Biobehavioral Reviews, 8(3), 343–367. https://doi.org/10.1016/0149-7634(84)90057-5
  • Ring, C., Edwards, L., & Kavussanu, M. (2008). Effects of isometric exercise on pain are mediated by blood pressure. Biological Psychology, 78(1), 123–128. https://doi.org/10.1016/j.biopsycho.2008.01.008
  • Senapati, A. K., Huntington, P. J., & Peng, Y. B. (2005). Spinal dorsal horn neuron response to mechanical stimuli is decreased by electrical stimulation of the primary motor cortex. Brain Research, 1036(1–2), 173–179. https://doi.org/10.1016/j.brainres.2004.12.043
  • Song, J. S., Spitz, R. W., Yamada, Y., Bell, Z. W., Wong, V., Abe, T., & Loenneke, J. P. (2021). Exercise-induced hypoalgesia and pain reduction following blood flow restriction: A brief review. Physical Therapy in Sport, 50, 89–96. https://doi.org/10.1016/j.ptsp.2021.04.005
  • Song, J. S., Yamada, Y., Wong, V., Bell, Z. W., Spitz, R. W., Abe, T., & Loenneke, J. P. (2022). Hypoalgesia following isometric handgrip exercise with and without blood flow restriction is not mediated by discomfort nor changes in systolic blood pressure. Journal of Sports Sciences, 40(5), 518–526. https://doi.org/10.1080/02640414.2021.2003569
  • Spitz, R. W., Wong, V., Bell, Z. W., Viana, R. B., Chatakondi, R. N., Abe, T., & Loenneke, J. P. (2022). Blood flow restricted exercise and discomfort: A review. Journal of Strength and Conditioning Research, 36(3), 871–879. https://doi.org/10.1519/JSC.0000000000003525
  • Spraker, M. B., Corcos, D. M., Kurani, A. S., Prodoehl, J., Swinnen, S. P., & Vaillancourt, D. E. (2012). Specific cerebellar regions are related to force amplitude and rate of force development. Neuroimage, 59(2), 1647–1656. https://doi.org/10.1016/j.neuroimage.2011.09.019
  • Sprouse-Blum, A. S., Smith, G., Sugai, D., & Parsa, F. D. (2010). Understanding endorphins and their importance in pain management. Hawaii Medical Journal, 69(3), 70–71.
  • Steele, J., Fisher, J., McKinnon, S., & McKinnon, P. (2016). Differentiation between perceived effort and discomfort during resistance training in older adults:Reliability of trainee ratings of effort and discomfort,and reliability and validity of trainer ratings of trainee effort. Journal of Trainology, 6(1), 1–8. https://doi.org/10.17338/trainology.6.1_1
  • Vaegter, H. B., Dørge, D. B., Schmidt, K. S., Jensen, A. H., & Graven-Nielsen, T. (2018). Test-retest reliabilty of exercise-induced hypoalgesia after aerobic exercise. Pain Medicine, 19(11), 2212–2222. https://doi.org/10.1093/pm/pny009
  • Vaegter, H. B., Handberg, G., & Graven-Nielsen, T. (2014). Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans. Pain, 155(1), 158–167. https://doi.org/10.1016/j.pain.2013.09.023
  • Vaegter, H. B., & Jones, M. D. (2020). Exercise-induced hypoalgesia after acute and regular exercise: Experimental and clinical manifestations and possible mechanisms in individuals with and without pain. PAIN Reports, 5(5), e823. https://doi.org/10.1097/PR9.0000000000000823
  • Vaegter, H. B., Lyng, K. D., Yttereng, F. W., Christensen, M. H., Sørensen, M. B., & Graven-Nielsen, T. (2019). Exercise-induced hypoalgesia after isometric wall squat exercise: A test-retest reliabilty study. Pain Medicine, 20(1), 129–137. https://doi.org/10.1093/pm/pny087
  • Yezierski, R. P., Gerhart, K. D., Schrock, B. J., & Willis, W. D. (1983). A further examination of effects of cortical stimulation on primate spinothalamic tract cells. Journal of Neurophysiology, 49(2), 424–441. https://doi.org/10.1152/jn.1983.49.2.424
  • Ylinen, J., Takala, E. P., Kautiainen, H., Nykänen, M., Häkkinen, A., Pohjolainen, T., Karppi, S.-L., & Airaksinen, O. (2005). Effect of long-term neck muscle training on pressure pain threshold: A randomized controlled trial. European Journal of Pain, 9(6), 673. https://doi.org/10.1016/j.ejpain.2005.01.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.