233
Views
1
CrossRef citations to date
0
Altmetric
Articles

Whole-Body Electromyostimulation Impacts Physiological Responses During Aerobic Running: A Randomized Trial

Pages 1133-1140 | Received 07 Mar 2022, Accepted 30 Aug 2022, Published online: 09 Jan 2023

References

  • Amaro-Gahete, F. J., De-la-O, A., Jurado-Fasoli, L., Dote-Montero, M., Gutiérrez, Á., Ruiz, J. R., & Castillo, M. J. (2019). Changes in physical fitness after 12 weeks of structured concurrent exercise training, high intensity interval training, or whole-body electromyostimulation training in sedentary middle-aged adults: A randomized controlled trial. Frontiers in Physiology, 10, Article 451. https://doi.org/10.3389/fphys.2019.00451
  • Amaro-Gahete, F. J., De-la-O, A., Sanchez-Delgado, G., Robles-Gonzalez, L., Jurado-Fasoli, L., Ruiz, J. R., & Gutierrez, A. (2018). Whole-body electromyostimulation improves performance-related parameters in runners. Frontiers in Physiology, 9, Article 1576. https://doi.org/10.3389/fphys.2018.01576
  • Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., Forman, D., Franklin, B., Guazzi, M., Gulati, M., Keteyian, S. J., Lavie, C. J., Macko, R., Mancini, D., & Milani, R. V., & American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Peripheral Vascular Disease, & Interdisciplinary Council on Quality of Care and Outcomes Research. (2010). Clinician’s guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation, 122(2), 191–225. https://doi.org/10.1161/CIR.0b013e3181e52e69
  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188. https://doi.org/10.1214/aos/1013699998
  • Bentley, D. J., Newell, J., & Bishop, D. (2007). Incremental exercise test design and analysis: Implications for performance diagnostics in endurance athletes. Sports Medicine, 37(7), 575–586. https://www.jssm.org/jssm-19-271.xml%3EFulltext
  • Berger, J., Ludwig, O., Becker, S., Backfisch, M., Kemmler, W., & Fröhlich, M. (2020). Effects of an impulse frequency dependent 10-week whole-body electromyostimulation training program on specific sport performance parameters. Journal of Sports Science & Medicine, 19(2), 271–281. https://www.jssm.org/jssm-19-271.xml%3EFulltext.
  • Bergstrom, M., & Hultman, E. (1988). Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. Journal of Applied Physiology, 65(4), 1500–1505. https://doi.org/10.1152/jappl.1988.65.4.1500
  • Berry, M. J., Dunn, C. J., Pittman, C. L., Kerr, W. C., & Adair, N. E. (1996). Increased ventilation in runners during running as compared to walking at similar metabolic rates. European Journal of Applied Physiology and Occupational Physiology, 73(3–4), 245–250. https://doi.org/10.1007/BF02425483
  • Binder-Macleod, S. A., & Snyder-Mackler, L. (1993). Muscle fatigue: Clinical implications for fatigue assessment and neuromuscular electrical stimulation. Physical Therapy, 73(12), 902–910. https://doi.org/10.1093/ptj/73.12.902
  • Buchheit, M., & Laursen, P. B. (2013a). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x
  • Buchheit, M., & Laursen, P. B. (2013b). High-intensity interval training, solutions to the programming puzzle: Part II: Anaerobic energy. Neuromuscular Load and Practical Applications. Sports Medicine, 43(10), 927–954. https://doi.org/10.1007/s40279-013-0066-5
  • Callegari, G. A., Novaes, J. S., Neto, G. R., Dias, I., Garrido, N. D., & Dani, C. (2017). Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. Journal of Human Kinetics, 58(1), 65–72. https://doi.org/10.1515/hukin-2017-0071
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum Associates.
  • Filipovic, A., Kleinöder, H., Dörmann, U., & Mester, J. (2012). Electromyostimulation—A systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. Journal of Strength and Conditioning Research, 26(9), 2600–2614. https://doi.org/10.1519/JSC.0b013e31823f2cd1
  • Finsterer, J., & Stöllberger, C. (2015). Severe rhabdomyolysis after MIHA-bodytec® electrostimulation with previous mild hyper-CK-emia and noncompaction. International Journal of Cardiology, 180, 100–102. https://doi.org/10.1016/j.ijcard.2014.11.148
  • Gregory, C. M., & Bickel, C. S. (2005). Recruitment patterns in human skeletal muscle during electrical stimulation. Physical Therapy, 85(4), 358–364. https://doi.org/10.1093/ptj/85.4.358
  • Hainaut, K., & Duchateau, J. (1992). Neuromuscular electrical stimulation and voluntary exercise. Sports Medicine, 14(2), 100–113. https://doi.org/10.2165/00007256-199214020-00003
  • Hamada, T., Hayashi, T., Kimura, T., Nakao, K., & Moritani, T. (2004). Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. Journal of Applied Physiology, 96(3), 911–916. https://doi.org/10.1152/japplphysiol.00664.2003
  • Kaçoğlu, C., & Kale, M. (2016). Acute effects of lower body electromyostimulation application with two different frequencies on isokinetic strength and jumping performance. Journal of Physical Education and Sport, 16(1), 38–45. https://doi.org/10.7752/jpes.2016.01007
  • Kästner, A., Braun, M., & Meyer, T. (2015). Two cases of rhabdomyolysis after training with electromyostimulation by 2 young male professional soccer players. Clinical Journal of Sport Medicine, 25(6), e71–e73. https://doi.org/10.1097/JSM.0000000000000153
  • Kemmler, W. (2020). Muskuläre Belastung unterschiedlicher Ganzkörper-Elektromyostimulations-(WB-EMS) Protokolle – Eine Crossover-Untersuchung mit Sportlern ohne WB-EMS Erfahrung. Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin, 59(3), 146–154. https://doi.org/10.1055/a-1019-7894
  • Kemmler, W., Froehlich, M., Von Stengel, S., & Kleinöder, H. (2016). Whole-body electromyostimulation – The need for common sense! Rationale and guideline for a safe and effective training. Deutsche Zeitschrift für Sportmedizin, 2016(9), 218–221. https://doi.org/10.5960/dzsm.2016.246
  • Kemmler, W., Schliffka, R., Mayhew, J. L., & Von Stengel, S. (2010). Effects of whole-body electromyostimulation on resting metabolic rate, body composition, and maximum strength in postmenopausal women: The training and electrostimulation trial. Journal of Strength and Conditioning Research, 24(7), 1880–1887. https://doi.org/10.1519/JSC.0b013e3181ddaeee
  • Kemmler, W., Teschler, M., Bebenek, M., & von Stengel, S. (2015). Hohe Kreatinkinase-Werte nach exzessiver Ganzkörper-Elektromyostimulation: Gesundheitliche Relevanz und Entwicklung im Trainingsverlauf. Wiener Medizinische Wochenschrift, 165(21–22), 427–435. https://doi.org/10.1007/s10354-015-0394-1
  • Kemmler, W., Von Stengel, S., Schwarz, J., & Mayhew, J. L. (2012). Effect of whole-body electromyostimulation on energy expenditure during exercise. Journal of Strength and Conditioning Research, 26(1), 240–245. https://doi.org/10.1519/JSC.0b013e31821a3a11
  • Kemmler, W., Weissenfels, A., Willert, S., Shojaa, M., von Stengel, S., Filipovic, A., Kleinöder, H., Berger, J., & Fröhlich, M. (2018). Efficacy and safety of low frequency Whole-Body Electromyostimulation (WB-EMS) to improve health-related outcomes in non-athletic adults. A systematic review. Frontiers in Physiology, 9, Article 573. https://doi.org/10.3389/fphys.2018.00573
  • KibiŠa, R., Grūnovas, A., Poderys, J., & Grūnovienė, D. (2013). Restoration of the work capacity of the skeletal muscle with electrical myostimulation. Journal of Strength and Conditioning Research, 27(2), 449–457. https://doi.org/10.1519/JSC.0b013e3182592227
  • Kleinert, J. (2006). Adjektivliste zur Erfassung der Wahrgenommenen Körperlichen Verfassung (WKV). Zeitschrift für Sportpsychologie, 13(4), 156–164. https://doi.org/10.1026/1612-5010.13.4.156
  • Kortianou, E. A., Papafilippou, E. K., & Karagkounis, A. (2021). Respiratory, cardiac and metabolic responses during electrical muscle stimulation in quadriceps muscle versus comparable voluntary muscle contractions. Scandinavian Journal of Clinical and Laboratory Investigation, 81(1), 12–17. https://doi.org/10.1080/00365513.2020.1846210
  • Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine, 32(1), 53–73. https://doi.org/10.2165/00007256-200232010-00003
  • Layec, G., Millet, G. P., Jougla, A., Micallef, J.-P., & Bendahan, D. (2007). Electrostimulation improves muscle perfusion but does not affect either muscle deoxygenation or pulmonary oxygen consumption kinetics during a heavy constant-load exercise. European Journal of Applied Physiology, 102(3), 289–297. https://doi.org/10.1007/s00421-007-0581-x
  • Paillard, T. (2008). Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Medicine, 38(2), 161–177. https://doi.org/10.2165/00007256-200838020-00005
  • Priego, J. I., Lucas-Cuevas, A. G., Aparicio, I., Giménez, J. V., Cortell-Tormo, J. M., & Pérez-Soriano, P. (2015). Long-term effects of graduated compression stockings on cardiorespiratory performance. Biology of Sport, 32(3), 219–223. https://doi.org/10.5604/20831862.1150304
  • Ratkevicius, A., Skurvydas, A., Povilonis, E., Quistorff, B., & Lexell, J. (1998). Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans. European Journal of Applied Physiology, 77(5), 462–468. https://doi.org/10.1007/s004210050361
  • Roecker, K. (2013). Die sportmedizinische Laktatdiagnostik: Technische Rahmenbedingungen und Einsatzbereiche. Deutsche Zeitschrift für Sportmedizin, 2013(12), 367–371. https://doi.org/10.5960/dzsm.2013.110
  • Salmons, S. (2009). Adaptive change in electrically stimulated muscle: A framework for the design of clinical protocols: Adaptive response of skeletal muscle. Muscle & Nerve, 40(6), 918–935. https://doi.org/10.1002/mus.21497
  • Solomonow, M. (1984). External control of the neuromuscular system. IEEE Transactions on Biomedical Engineering, BME, 31(12), 752–763. https://doi.org/10.1109/TBME.1984.325235
  • Teschler, M., Wassermann, A., Weissenfels, A., Fröhlich, M., Kohl, M., Bebenek, M., Von Stengel, S., & Kemmler, W. (2018). Short time effect of a single session of intense whole-body electromyostimulation on energy expenditure. A contribution to fat reduction? Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 43(5), 528–530. https://doi.org/10.1139/apnm-2017-0602
  • Totsuka, M., Nakaji, S., Suzuki, K., Sugawara, K., & Sato, K. (2002). Break point of serum creatine kinase release after endurance exercise. Journal of Applied Physiology, 93(4), 1280–1286. https://doi.org/10.1152/japplphysiol.01270.2001
  • Verch, R., Stoll, J., Hadzic, M., Quarmby, A., & Völler, H. (2021). Whole-body EMS superimposed walking and nordic walking on a treadmill—Determination of exercise intensity to conventional exercise. Frontiers in Physiology, 12, Article 715417. https://doi.org/10.3389/fphys.2021.715417
  • Wahl, P., Hein, M., Achtzehn, S., Bloch, W., & Mester, J. (2014). Acute metabolic, hormonal and psychological responses to cycling with superimposed electromyostimulation. European Journal of Applied Physiology, 114(11), 2331–2339. https://doi.org/10.1007/s00421-014-2952-4
  • Wahl, P., Hein, M., Achtzehn, S., Bloch, W., & Mester, J. (2015). Acute effects of superimposed electromyostimulation during cycling on myokines and markers of muscle damage. Journal of Musculoskeletal & Neuronal Interactions, 15(1), 53–59. https://www.ismni.org/jmni/pdf/59/06WAHL.pdf
  • Wahl, P., Schaerk, J., Achtzehn, S., Kleinöder, H., Bloch, W., & Mester, J. (2012). Physiological responses and perceived exertion during cycling with superimposed electromyostimulation. Journal of Strength and Conditioning Research, 26(9), 2383–2388. https://doi.org/10.1519/JSC.0b013e31823f2749
  • Watanabe, K., Takada, T., Kawade, S., & Moritani, T. (2021). Effect of exercise intensity on metabolic responses on combined application of electrical stimulation and voluntary exercise. Physiological Reports, 9(3), e14758. https://doi.org/10.14814/phy2.14758
  • Watanabe, K., Taniguchi, Y., & Moritani, T. (2014). Metabolic and cardiovascular responses during voluntary pedaling exercise with electrical muscle stimulation. European Journal of Applied Physiology, 114(9), 1801–1807. https://doi.org/10.1007/s00421-014-2906-x
  • Watanabe, K., Yoshida, T., Ishikawa, T., Kawade, S., & Moritani, T. (2019). Effect of the combination of whole-body neuromuscular electrical stimulation and voluntary exercise on metabolic responses in human. Frontiers in Physiology, 10, Article 291. https://doi.org/10.3389/fphys.2019.00291

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.