336
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of Pre-Exercise Voluntary Hyperventilation on Metabolic and Cardiovascular Responses During and After Intense Exercise

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 1141-1152 | Received 28 Oct 2021, Accepted 29 Aug 2022, Published online: 28 Sep 2022

References

  • ACSM. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 41(3), 687–708. https://doi.org/10.1249/MSS.0b013e3181915670
  • Ainslie, P. N., & Duffin, J. (2009). Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: Mechanisms of regulation, measurement, and interpretation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(5), R1473–R1495. https://doi.org/10.1152/ajpregu.91008.2008
  • Amann, M., Blain, G. M., Proctor, L. T., Sebranek, J. J., Pegelow, D. F., & Dempsey, J. A. (2010). Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. Journal of Applied Physiology, 109(4), 966–976. https://doi.org/10.1152/japplphysiol.00462.2010
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012
  • Boushel, R., Madsen, P., Nielsen, H. B., Quistorff, B., & Secher, N. H. (1998). Contribution of pH, diprotonated phosphate and potassium for the reflex increase in blood pressure during handgrip. Acta Physiologica Scandinavica, 164(3), 269–275. https://doi.org/10.1046/j.1365-201X.1998.00429.x
  • Brandi, G., & Clode, M. (1969). CO2 washout during hyperventilation in man. Respiration Physiology, 7(2), 163–172. https://doi.org/10.1016/0034-5687(69)90003-6
  • Bruce, E. N., & Cherniack, N. S. (1987). Central chemoreceptors. Journal of Applied Physiology, 62(2), 389–402. https://doi.org/10.1152/jappl.1987.62.2.389
  • Chin, L. M., Heigenhauser, G. J., Paterson, D. H., & Kowalchuk, J. M. (2010a). Effect of hyperventilation and prior heavy exercise on O2 uptake and muscle deoxygenation kinetics during transitions to moderate exercise. European Journal of Applied Physiology, 108(5), 913–925. https://doi.org/10.1007/s00421-009-1293-1
  • Chin, L. M., Heigenhauser, G. J., Paterson, D. H., & Kowalchuk, J. M. (2010b). Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. Journal of Applied Physiology, 108(6), 1641–1650. https://doi.org/10.1152/japplphysiol.01346.2009
  • Chin, L. M., Heigenhauser, G. J., Paterson, D. H., & Kowalchuk, J. M. (2013). Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise. Experimental Physiology, 98(12), 1668–1682. https://doi.org/10.1113/expphysiol.2013.074021
  • Chin, L. M., Leigh, R. J., Heigenhauser, G. J., Rossiter, H. B., Paterson, D. H., & Kowalchuk, J. M. (2007). Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. The Journal of Physiology, 583(Pt 1), 351–364. https://doi.org/10.1113/jphysiol.2007.132837
  • Dobashi, K., Fujii, N., Ichinose, M., Fujimoto, T., & Nishiyasu, T. (2021). Voluntary hypocapnic hyperventilation lasting 5 min and 20 min similarly reduce aerobic metabolism without affecting power outputs during Wingate anaerobic test. European Journal of Sport Science, 21(8), 1148–1155. https://doi.org/10.1080/17461391.2020.1812728
  • Dobashi, K., Fujii, N., Watanabe, K., Tsuji, B., Sasaki, Y., Fujimoto, T., Tanigawa, S., & Nishiyasu, T. (2017). Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. European Journal of Applied Physiology, 117(8), 1573–1583. https://doi.org/10.1007/s00421-017-3646-5
  • Duffin, J., Mohan, R. M., Vasiliou, P., Stephenson, R., & Mahamed, S. (2000). A model of the chemoreflex control of breathing in humans: Model parameters measurement. Respiration Physiology, 120(1), 13–26. https://doi.org/10.1016/S0034-5687(00)00095-5
  • Forbes, S. C., Kowalchuk, J. M., Thompson, R. T., & Marsh, G. D. (2007). Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. Journal of Applied Physiology, 102(4), 1565–1573. https://doi.org/10.1152/japplphysiol.00895.2006
  • Fujii, N., Tsuchiya, S., Tsuji, B., Watanabe, K., Sasaki, Y., & Nishiyasu, T. (2015). Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. European Journal of Applied Physiology, 115(9), 1967–1974. https://doi.org/10.1007/s00421-015-3179-8
  • Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
  • Halliwill, J. R., Buck, T. M., Lacewell, A. N., & Romero, S. A. (2013). Postexercise hypotension and sustained postexercise vasodilatation: What happens after we exercise? Experimental Physiology, 98(1), 7–18. https://doi.org/10.1113/expphysiol.2011.058065
  • Halliwill, J. R., Sieck, D. C., Romero, S. A., Buck, T. M., & Ely, M. R. (2014). Blood pressure regulation X: What happens when the muscle pump is lost? Post-exercise hypotension and syncope. European Journal of Applied Physiology, 114(3), 561–578. https://doi.org/10.1007/s00421-013-2761-1
  • Harms, M. P., Wesseling, K. H., Pott, F., Jenstrup, M., Van Goudoever, J., Secher, N. H., & Van Lieshout, J. J. (1999). Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clinical Science, 97(3), 291–301. https://doi.org/10.1042/CS19990061
  • Hayashi, N., Ishihara, M., Tanaka, A., & Yoshida, T. (1999). Impeding O(2) unloading in muscle delays oxygen uptake response to exercise onset in humans. The American Journal of Physiology, 277(5), R1274–1281. https://doi.org/10.1152/ajpregu.1999.277.5.R1274
  • Hughson, R. L., Shoemaker, J. K., Tschakovsky, M. E., & Kowalchuk, J. M. (1996). Dependence of muscleV˙o 2 on blood flow dynamics at onset of forearm exercise. Journal of Applied Physiology, 81(4), 1619–1626. https://doi.org/10.1152/jappl.1996.81.4.1619
  • Jacobi, M. S., Iyawe, V. I., Patil, C. P., Cummin, A. R., & Saunders, K. B. (1987). Ventilatory responses to inhaled carbon dioxide at rest and during exercise in man. Clinical Science, 73(2), 177–182. https://doi.org/10.1042/cs0730177
  • Jacobi, M. S., Patil, C. P., & Saunders, K. B. (1989). The transient ventilatory response to carbon dioxide at rest and in exercise in man. Respiration Physiology, 77(2), 225–237. https://doi.org/10.1016/0034-5687(89)90009-1
  • Janse de Jonge, X. A. (2003). Effects of the menstrual cycle on exercise performance. Sports Medicine, 33(11), 833–851. https://doi.org/10.2165/00007256-200333110-00004
  • Johnson, M. A., Sharpe, G. R., Needham, R. S., & Williams, N. C. (2021). Effects of prior voluntary hyperventilation on the 3-min all-out cycling test in men. Medicine and Science in Sports and Exercise, 53(7), 1482–1494. https://doi.org/10.1249/mss.0000000000002608
  • Keir, D. A., Duffin, J., Millar, P. J., & Floras, J. S. (2019). Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men. The Journal of Physiology, 597(13), 3281–3296. https://doi.org/10.1113/jp277691
  • Keir, D. A., Pollock, M., Thuraisingam, P., Paterson, D. H., Heigenhauser, G. J. F., Rossiter, H. B., & Kowalchuk, J. M. (2018). Slow VO2 kinetics in acute hypoxia are not related to a hyperventilation-induced hypocapnia. Respiratory Physiology & Neurobiology, 251, 41–49. https://doi.org/10.1016/j.resp.2018.02.010
  • Keramidas, M. E., Kounalakis, S. N., Eiken, O., & Mekjavic, I. B. (2011). Muscle and cerebral oxygenation during exercise performance after short-term respiratory work. Respiratory Physiology & Neurobiology, 175(2), 247–254. https://doi.org/10.1016/j.resp.2010.11.009
  • Kontos, H., Richardson, D., Raper, A., & Zubair-ul-Hassan, P. J. L. J. (1972). Mechanisms of action of hypocapnic alkalosis on limb blood vessels in man and dog. American Journal of Physiology-Legacy Content, 223(6), 1296–1307. https://doi.org/10.1152/ajplegacy.1972.223.6.1296
  • LeBlanc, P. J., Parolin, M. L., Jones, N. L., & Heigenhauser, G. J. F. (2002). Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise. The Journal of Physiology, 544(1), 303–313. https://doi.org/10.1113/jphysiol.2002.022764
  • Leithauser, R. M., Boning, D., Hutler, M., & Beneke, R. (2016). Enhancement on Wingate anaerobic test performance with hyperventilation. International Journal of Sports Physiology and Performance, 11(7), 627–634. https://doi.org/10.1123/ijspp.2015-0001
  • Nicolò, A., Girardi, M., Bazzucchi, I., Felici, F., & Sacchetti, M. (2018). Respiratory frequency and tidal volume during exercise: Differential control and unbalanced interdependence. Physiological Reports, 6(21), e13908. https://doi.org/10.14814/phy2.13908
  • Nishiyasu, T., Ueno, H., Nishiyasu, M., Tan, N., Morimoto, K., Morimoto, A., Deguchi, T., & Murakami, N. (1994). Relationship between mean arterial pressure and muscle cell pH during forearm ischaemia after sustained handgrip. Acta Physiologica Scandinavica, 151(2), 143–148. https://doi.org/10.1111/j.1748-1716.1994.tb09731.x
  • Richardson, D. W., Kontos, H. A., Raper, A. J., & Patterson, J. L. (1972). Systemic circulatory responses to hypocapnia in man. American Journal of Physiology Heart and Circulatory Physiology, 223(6), 1308–1312. https://doi.org/10.1152/ajplegacy.1972.223.6.1308
  • Rodríguez, F., & Mader, A. (2011). Energy systems in swimming. In L. Seifert, D. Chollet, & I. Mujka (Eds.), World book of swimming: From science to performance (pp. 225–240). Nova Science.
  • Rowell, L. B., O’Leary, D. S., & Kellog, D. L. (1996). Integration of cardiovascular control systems in dynamic exercise. In R. Terjung (Ed.), Comprehensive physiology: Supplement 29 (Handbook of physiology, exercise: Regulation and integration of multiple systems) (pp. 1025–1063). https://doi.org/10.1002/cphy.cp120117
  • Shoemaker, J. K., Hodge, L., & Hughson, R. L. (1994). Cardiorespiratory kinetics and femoral artery blood velocity during dynamic knee extension exercise. Journal of Applied Physiology, 77(6), 2625–2632. https://doi.org/10.1152/jappl.1994.77.6.2625
  • Shoemaker, J. K., Vovk, A., & Cunningham, D. A. (2002). Peripheral chemoreceptor contributions to sympathetic and cardiovascular responses during hypercapnia. Canadian Journal of Physiology and Pharmacology, 80(12), 1136–1144. https://doi.org/10.1139/y02-148
  • Somers, V. K., Mark, A. L., Zavala, D. C., & Abboud, F. M. (1989). Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. Journal of Applied Physiology, 67(5), 2095–2100. https://doi.org/10.1152/jappl.1989.67.5.2095
  • Spencer, M. R., & Gastin, P. B. (2001). Energy system contribution during 200- to 1500-m running in highly trained athletes. Medicine and Science in Sports and Exercise, 33(1), 157–162. https://doi.org/10.1097/00005768-200101000-00024
  • Spriet, L. L., & Heigenhauser, G. J. (2002). Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exercise and Sport Sciences Reviews, 30(2), 91–95. https://doi.org/10.1097/00003677-200204000-00009
  • Steinback, C. D., Salzer, D., Medeiros, P. J., Kowalchuk, J., & Shoemaker, J. K. (2009). Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(2), R402–410. https://doi.org/10.1152/ajpregu.90772.2008
  • Sugawara, J., Tanabe, T., Miyachi, M., Yamamoto, K., Takahashi, K., Iemitsu, M., Otsuki, T., Homma, S., Maeda, S., Ajisaka, R., & Matsuda, M. (2003). Non-invasive assessment of cardiac output during exercise in healthy young humans: Comparison between Modelflow method and Doppler echocardiography method. Acta Physiologica Scandinavica, 179(4), 361–366. https://doi.org/10.1046/j.0001-6772.2003.01211.x
  • Wan, H. Y., Weavil, J. C., Thurston, T. S., Georgescu, V. P., Hureau, T. J., Bledsoe, A. D., Buys, M. J., Jessop, J. E., Richardson, R. S., & Amann, M. (2020). The exercise pressor reflex and chemoreflex interaction: Cardiovascular implications for the exercising human. The Journal of Physiology, 598(12), 2311–2321. https://doi.org/10.1113/jp279456
  • Ward, S. A., Whipp, B. J., Koyal, S., & Wasserman, K. (1983). Influence of body CO2 stores on ventilatory dynamics during exercise. Journal of Applied Physiology, 55(3), 742–749. https://doi.org/10.1152/jappl.1983.55.3.742

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.