166
Views
1
CrossRef citations to date
0
Altmetric
Pages 405-415 | Received 03 Jan 2023, Accepted 06 Jun 2023, Published online: 19 Jul 2023

References

  • Adams, V., & Linke, A. (2019, abril de). Impact of exercise training on cardiovascular disease and risk. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(4), 728–734. https://doi.org/10.1016/j.bbadis.2018.08.019
  • An, S., Ahn, C., Moon, S., Sim, E. J., & Park, S. K. (2022, de março de). Individualized biological age as a predictor of disease: Korean Genome and Epidemiology Study (KoGES) cohort. Journal of Personalized Medicine, 12(3), 505. https://doi.org/10.3390/jpm12030505
  • Armstrong, N. J., Mather, K. A., Thalamuthu, A., Wright, M. J., Trollor, J. N., Ames, D., Brodaty, H., Schofield, P. R., Sachdev, P. S., & Kwok, J. B. (2017, maio de). Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics, 9(5), 689–700. https://doi.org/10.2217/epi-2016-0179
  • Avancini, A., Sartori, G., Gkountakos, A., Casali, M., Trestini, I., Tregnago, D., Bria, E., Jones, L. W., Milella, M., Lanza, M., & Pilotto, S. (2020, de março de 1). Physical activity and exercise in lung cancer care: Will promises be fulfilled? The Oncologist, 25(3), e555–69. https://doi.org/10.1634/theoncologist.2019-0463
  • Becker, J., Mahlke, N. S., Reckert, A., Eickhoff, S. B., & Ritz-Timme, S. (2020, março de). Age estimation based on different molecular clocks in several tissues and a multivariate approach: An explorative study. International Journal of Legal Medicine, 134(2), 721–733. https://doi.org/10.1007/s00414-019-02054-9
  • Bergman, B. C., Wolfel, E. E., Butterfield, G. E., Lopaschuk, G. D., Casazza, G. A., Horning, M. A., Brooks, G. A. (1999, de novembro de). Active muscle and whole body lactate kinetics after endurance training in men. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 87(5), 1684–1696. https://doi.org/10.1152/jappl.1999.87.5.1684
  • Brazilian Guidelines of Hypertension. (2020). https://pubmed.ncbi.nlm.nih.gov/33909761/
  • Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., & Tsai, P. C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P. … Steve Horvath, S. (2016, de setembro de 28). DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging, 8(9), 1844–1865. https://doi.org/10.18632/aging.101020
  • da Silva Rodrigues, G., Noronha, N. Y., Almeida, M. L., Sobrinho, A. C., Watanabe, L. M., Pinhel, M. A. D. S., de Lima, J. G. R., Zhang, R., Nonino, C. B., Alves, C. R. R., & Bueno Júnior, C. R. (2023, de março de 1). Exercise training modifies the whole blood DNA methylation profile in middle-aged and older women. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 134(3), 610–621. https://doi.org/10.1152/japplphysiol.00237.2022
  • De la Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., Blasco Lafarga, C., Garcia-Dominguez, E., Carretero, A., Correas, A. G., Viña, J., & Gomez-Cabrera, M. C. (2020, setembro de). Physical exercise in the prevention and treatment of Alzheimer’s disease. Journal of Sport and Health Science, 9(5), 394–404. https://doi.org/10.1016/j.jshs.2020.01.004
  • Dieli-Conwright, C. M., Courneya, K. S., Demark-Wahnefried, W., Sami, N., Lee, K., Sweeney, F. C., Stewart, C., Buchanan, T. A., Spicer, D., Tripathy, D., Bernstein, L., & Mortimer, J. E. (2018, dezembro de). Aerobic and resistance exercise improves physical fitness, bone health, and quality of life in overweight and obese breast cancer survivors: A randomized controlled trial. Breast Cancer Research: BCR, 20(1), 124. https://doi.org/10.1186/s13058-018-1051-6
  • Fitzgerald, K. N., Campbell, T., Makarem, S., & Hodges, R. (2023, de abril de 15). Potential reversal of biological age in women following an 8-week methylation-supportive diet and lifestyle program: A case series. Aging, 15(6), 1833–1839. https://doi.org/10.18632/aging.204602
  • Fitzgerald, K. N., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., Henkel, J., Twedt, M. W., Giannopoulou, D., Herdell, J., Logan, S., & Bradley, R. (2021, de abril de). Potential reversal of epigenetic age using a diet and lifestyle intervention: A pilot randomized clinical trial. Aging, 13(7), 9419–9432. https://doi.org/10.18632/aging.202913
  • Ge, S. X., Jung, D., & Yao, R. (2020, de abril de). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Valencia A, organizador. Bioinformatics, 36(8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931
  • Granata, C., Jamnick, N. A., & Bishop, D. J. (2018, agosto de). Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Medicine, 48(8), 1809–1828. https://doi.org/10.1007/s40279-018-0936-y
  • Harman, D. (2006, de janeiro de 25). Aging: Overview. Annals of the New York Academy of Sciences, 928(1), 1–21. https://doi.org/10.1111/j.1749-6632.2001.tb05631.x
  • Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., Diez, J., Sanchez-Mut, J. V., Setien, F., Carmona, F. J., Puca, A. A., Sayols, S., Pujana, M. A., Serra-Musach, J., Iglesias-Platas, I., Formiga, F., Fernandez, A. F., Fraga, M. F. … Wang, J. (2012, de junho de). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences, 109(26), 10522–10527. https://doi.org/10.1073/pnas.1120658109
  • Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115
  • Jaffe, A. E., Murakami, P., Lee, H., Leek, J. T., Fallin, M. D., Feinberg, A. P., & Irizarry, R. A. (2012, fevereiro de). Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. International Journal of Epidemiology, 41(1), 200–209. https://doi.org/10.1093/ije/dyr238
  • Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015, dezembro de). DNA methylation and healthy human aging. Aging Cell, 14(6), 924–932. https://doi.org/10.1111/acel.12349
  • Karvonen, J., & Vuorimaa, T. (1988, maio de). Heart rate and exercise intensity during sports activities: Practical application. Sports Medicine, 5(5), 303–312. https://doi.org/10.2165/00007256-198805050-00002
  • Kresovich, J. K., Garval, E. L., Martinez Lopez, A. M., Xu, Z., Niehoff, N. M., White, A. J., Sandler, D. P., & Taylor, J. A. (2021, de junho de). Associations of body composition and physical activity level with multiple measures of epigenetic age acceleration. American Journal of Epidemiology, 190(6), 984–993. https://doi.org/10.1093/aje/kwaa251
  • León, I., Herrero Roldán, S., Rodrigo, M. J., López Rodríguez, M., Fisher, J., Mitchell, C., & Lage-Castellanos, A. (2022, de agosto de). The shared mother-child epigenetic signature of neglect is related to maternal adverse events. Frontiers in Physiology, 13(13), 966740. https://doi.org/10.3389/fphys.2022.966740
  • Li, A., Koch, Z., & Ideker, T. (2022). Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging. Journal of Internal Medicine, 292(5), 733–744. https://doi.org/10.1111/joim.13533
  • Lin, W., Wang, Y., Teng, I., Liu, C., & Lou, X. (2021, outubro de). Associations of five obesity metrics with epigenetic age acceleration: Evidence from 2,474 Taiwan Biobank participants. Obesity, 29(10), 1731–1738. https://doi.org/10.1002/oby.23255
  • Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019, de janeiro de). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging, 11(2), 303–327. https://doi.org/10.18632/aging.101684
  • Lu, A. T., Xue, L., Salfati, E. L., Chen, B. H., Ferrucci, L., Levy, D., Joehanes, R., Murabito, J. M., Kiel, D. P., Tsai, P.-C., Yet, I., Bell, J. T., Mangino, M., Tanaka, T., McRae, A. F., Marioni, R. E., Visscher, P. M., Wray, N. R. … Lunetta, K. L. (2018, de janeiro de). GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nature Communications, 9(1), 387. https://doi.org/10.1038/s41467-017-02697-5
  • McGee, S. L., & Hargreaves, M. (2020, setembro de). Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit. Nature Reviews Endocrinology, 16(9), 495–505. https://doi.org/10.1038/s41574-020-0377-1
  • Morris, B. J., Willcox, B. J., & Donlon, T. A. (2019, julho de). Genetic and epigenetic regulation of human aging and longevity. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(7), 1718–1744. https://doi.org/10.1016/j.bbadis.2018.08.039
  • Noronha, N. Y., da Silva Rodrigues, G., de Souza Pinhel, M. A., Cazier, J. B., Watanabe, L. M., Menezes, A. N., Bueno, C. R., Nicoletti, C. F., de Oliveira, B. A. P., Schineider, I. M., Yonehara Noma, I. H., Dias Alcarás, I. C., Barbosa, F., & Barbosa Nonino, C. (2022, de maio de 6). Sample preparation to bioinformatics analysis of DNA methylation: Association strategy for obesity and related trait studies. Journal of Visualized Experiments: JoVe, (183), 62598. https://doi.org/10.3791/62598-v
  • Obesity-and-overweight [Internet]. (2022). [citado 31 de outubro de 2022]. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  • Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, M. P. (2021, agosto de). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Research Reviews, 69, 101348. https://doi.org/10.1016/j.arr.2021.101348
  • Pavanello, S., Campisi, M., Tona, F., Dal Lin, C., & Iliceto, S. (2019, de agosto de). Exploring epigenetic age in response to intensive relaxing training: A pilot study to slow down biological age. International Journal of Environmental Research and Public Health, 16(17), 3074. https://doi.org/10.3390/ijerph16173074
  • Pekas, E. J., Shin, J., Son, W. M., Headid, R. J., & Park, S. Y. (2020, de maio de 30). Habitual combined exercise protects against age-associated decline in vascular function and lipid profiles in elderly postmenopausal women. International Journal of Environmental Research and Public Health, 17(11), 3893. https://doi.org/10.3390/ijerph17113893
  • Reigal, R. E., Moral-Campillo, L., Morillo-Baro, J. P., Juárez-Ruiz de Mier, R., Hernández-Mendo, A., & Morales-Sánchez, V. (2020, de fevereiro de). Physical exercise, fitness, cognitive functioning, and psychosocial variables in an adolescent sample. International Journal of Environmental Research and Public Health, 17(3), 1100. https://doi.org/10.3390/ijerph17031100
  • Rikli, R. E., & Jones, C. J. (1999, abril de). Development and validation of a functional fitness test for community-residing older adults. Journal of Aging and Physical Activity, 7(2), 129–161. https://doi.org/10.1123/japa.7.2.129
  • Rodrigues, K. P., Prado, L., de Almeida ML, Yamada, A. K., Finzeto, L. C., & Bueno Júnior, C. R. (2021, de novembro de). Effects of combined versus multicomponent training in physically active women aged 50–75 years. Research Quarterly for Exercise and Sport, 93(4), 710–717. https://doi.org/10.1080/02701367.2021.1910119
  • Rowlands, D. S., Page, R. A., Sukala, W. R., Giri, M., Ghimbovschi, S. D., Hayat, I., Cheema, B. S., Lys, I., Leikis, M., Sheard, P. W., Wakefield, S. J., Breier, B., Hathout, Y., Brown, K., Marathi, R., Orkunoglu-Suer, F. E., Devaney, J. M., Leiken, B. , and Hopkins, W. G. (2014, de outubro de). Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiological Genomics, 46(20), 747–765. https://doi.org/10.1152/physiolgenomics.00024.2014
  • Ruangthai, R., & Phoemsapthawee, J. (2019, maio de). Combined exercise training improves blood pressure and antioxidant capacity in elderly individuals with hypertension. Journal of Exercise Science & Fitness, 17(2), 67–76. https://doi.org/10.1016/j.jesf.2019.03.001
  • Sailani, M. R., Halling, J. F., Møller, H. D., Lee, H., Plomgaard, P., Pilegaard, H., Snyder, M. P., & Regenberg, B. (2019, dezembro de). Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties, and oxidative stress resistance in aged human skeletal muscle. Scientific Reports, 9(1), 3272. https://doi.org/10.1038/s41598-018-37895-8
  • Segev, D., Hellerstein, D., Carasso, R., & Dunsky, A. (2019, dezembro de). The effect of a stability and coordination training programme on balance in older adults with cardiovascular disease: A randomised exploratory study. European Journal of Cardiovascular Nursing: Journal of the Working Group on Cardiovascular Nursing of the European Society of Cardiology, 18(8), 736–743. https://doi.org/10.1177/1474515119864201
  • Sillanpää, E., Heikkinen, A., Kankaanpää, A., Paavilainen, A., Kujala, U. M., Tammelin, T. H., Kovanen, V., Sipilä, S., Pietiläinen, K. H., Kaprio, J., Ollikainen, M., & Laakkonen, E. K. (2021, dezembro de). Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clinical Epigenetics, 13(1), 110. https://doi.org/10.1186/s13148-021-01094-6
  • Son, W. M., Sung, K. D., Cho, J. M., & Park, S. Y. (2017, março de). Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause, 24(3), 262–268. https://doi.org/10.1097/GME.0000000000000765
  • Soriano-Tárraga, C., Giralt-Steinhauer, E., Mola-Caminal, M., Ois, A., Rodríguez-Campello, A., Cuadrado-Godia, E., Fernández-Cadenas, I., Cullell, N., Roquer, J., & Jiménez-Conde, J. (2018, dezembro de). Biological Age is a predictor of mortality in Ischemic Stroke. Scientific Reports, 8(1), 4148. https://doi.org/10.1038/s41598-018-22579-0
  • Tan, Q. (2021, janeiro de). Epigenetic age acceleration as an effective predictor of diseases and mortality in the elderly. E Bio Medicine, 63, 103174. https://doi.org/10.1016/j.ebiom.2020.103174
  • Tian, Y., Morris, T. J., Webster, A. P., Yang, Z., Beck, S., Feber, A., & Teschendorff, A. E. (2017, de dezembro de). ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Valencia A, organizador. Bioinformatics, 33(24), 3982–3984. https://doi.org/10.1093/bioinformatics/btx513
  • Wang, L. L., Wang, Q., Hong, Y., Ojo, O., Jiang, Q., Hou, Y. Y., Huang, Y.-H., & Wang, X.-H. (2018, de maio de 23). The effect of low-carbohydrate diet on glycemic control in patients with type 2 diabetes mellitus. Nutrients, 10(6), 661. https://doi.org/10.3390/nu10060661
  • Yumi Noronha, N., da Silva Rodrigues, G., Harumi Yonehara Noma, I., Fernan da Cunha Brandao, C., Pereira Rodrigues, K., Colello Bruno, A., Sae Lee, C., Moriguchi Watanabe, L., Augusta de Souza Pinhel, M., Mello Schineider, I., Luciano de Almeida, M., Barbosa Júnior, F., Araújo Morais, D., Tavares de Sousa Júnior, W., Plösch, T., Roberto Bueno Junior, C., & Barbosa Nonino, C. (2022, de agosto de 15). 14-weeks combined exercise epigenetically modulated 118 genes of menopausal women with prediabetes. Frontiers in Endocrinology, 13, 895489. https://doi.org/10.3389/fendo.2022.895489
  • Zeilinger, S., Kühnel, B., Klopp, N., Baurecht, H., Kleinschmidt, A., Gieger, C., Weidinger, S., Lattka, E., Adamski, J., Peters, A., Strauch, K., Waldenberger, M., & Illig, T. (2013, de maio de 17). Tobacco smoking leads to extensive genome-wide changes in DNA methylation. Chen A, organizador. PLoS One, 8(5), e63812. https://doi.org/10.1371/journal.pone.0063812

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.