190
Views
0
CrossRef citations to date
0
Altmetric
Pages 466-475 | Received 06 Oct 2022, Accepted 11 Sep 2023, Published online: 18 Oct 2023

References

  • Abe, T., Mouser, J. G., Dankel, S. J., Bell, Z. W., Buckner, S. L., Mattocks, K. T., Jessee, M. B., & Loenneke, J. P. (2019). A method to standardize the blood flow restriction pressure by an elastic cuff. Scandinavian Journal of Medicine & Science in Sports, 29(3), 329–335. https://doi.org/10.1111/sms.13340
  • Behringer, M., Behlau, D., Montag, J. C. K., McCourt, M. L., & Mester, J. (2017). Low-intensity sprint training with blood flow restriction improves 100-m dash. The Journal of Strength & Conditioning Research, 31(9), 2462–2472. https://doi.org/10.1519/JSC.0000000000001746
  • Bell, Z. W., Dankel, S. J., Spitz, R. W., Chatakondi, R. N., Abe, T., & Loenneke, J. P. (2020). The perceived tightness scale does not provide reliable estimates of blood flow restriction pressure. Journal of Sport Rehabilitation, 29(4), 516–518. https://doi.org/10.1123/jsr.2018-0439
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports and Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012
  • Brekke, A. F., Sørensen, A. N., Buhr, C., Johannesdottír, Í. O., & Jakobsen, T. L. (2020). The validity and reliability of the handheld oximeter to determine limb occlusion pressure for blood flow restriction exercise in the lower extremity. International Journal of Sports Physical Therapy, 15(5), 783–791. https://doi.org/10.26603/ijspt20200783
  • Christiansen, D., Murphy, R. M., Bangsbo, J., Stathis, C. G., & Bishop, D. J. (2018). Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiologica, 223(2). https://doi.org/10.1111/apha.13045
  • Corvino, R. B., Rossiter, H. B., Loch, T., Martins, J. C., & Caputo, F. (2017). Physiological responses to interval endurance exercise at different levels of blood flow restriction. European Journal of Applied Physiology, 117(1), 39–52. https://doi.org/10.1007/s00421-016-3497-5
  • Corvino, R. B., Scheffer, D. D. L., Penteado dos Santos, R., Latini, A., Oliveira, A. S., & Caputo, F. (2022). Muscle fatigue is attenuated when applying intermittent compared with continuous blood flow restriction during endurance cycling. International Journal of Sports Physiology & Performance, 17(7), 1126–1131. https://doi.org/10.1123/ijspp.2021-0523
  • Fattah, A., & Salem, H. (2011). Effect of occlusion swimming training on physiological biomarkers and swimming performance. World Journal Sport Sciences, 4(1), 70–75.
  • Freitas, E. D. S., Miller, R. M., Heishman, A. D., Aniceto, R. R., Silva, J. G. C., & Bemben, M. G. (2019). Perceptual responses to continuous versus intermittent blood flow restriction exercise: A randomized controlled trial. Physiology & Behavior, 212(October), 112717. https://doi.org/10.1016/j.physbeh.2019.112717
  • Gallagher, E. J., Bijur, P. E., Latimer, C., & Silver, W. (2002). Reliability and validity of a visual analog scale for acute abdominal pain in the ED. The American Journal of Emergency Medicine, 20(4), 287–290. https://doi.org/10.1053/ajem.2002.33778
  • González-Boto, R., Salguero, A., Tuero, C., González-Gallego, J., & Márquez, S. (2008). Monitorización de los efectos de cambios en la carga de entrenamiento sobre el estrés y la recuperación en nadadores. Journal of Physiology and Biochemistry, 64(1), 19–26. https://doi.org/10.1007/BF03168231
  • Hamaoka, T., Katsumura, T., Murase, N., Nishio, S., Osada, T., Sako, T., Higuchi, H., Kurosawa, Y., Shimomitsu, T., Miwa, M., & Chance, B. (2000). Quantification of ischemic muscle deoxygenation by near infrared time-resolved spectroscopy. Journal of Biomedical Optics, 5(1), 102. https://doi.org/10.1117/1.429975
  • Held, S., Behringer, M., & Donath, L. (2020). Low intensity rowing with blood flow restriction over 5 weeks increases VO2max in elite rowers: A randomized controlled trial. Journal of Science & Medicine in Sport / Sports Medicine Australia, 23(3), 304–308. https://doi.org/10.1016/j.jsams.2019.10.002
  • Hopkins, W. G. (2015). Spreadsheets for analysis of validity and reliability. Sportscience, 19, 36–42.
  • Hwang, H., Mizuno, S., Kasai, N., Kojima, C., Sumi, D., Hayashi, N., & Goto, K. (2020). Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction. Physical Activity and Nutrition, 24(2), 30–37. https://doi.org/10.20463/pan.2020.0012
  • Jessee, M. B., Buckner, S. L., Dankel, S. J., Counts, B. R., Abe, T., & Loenneke, J. P. (2016). The influence of cuff width, sex, and race on arterial occlusion: Implications for blood flow restriction research. Sports Medicine, 46(6), 913–921. https://doi.org/10.1007/s40279-016-0473-5
  • Karabulut, M., Leal, J. A., Garcia, S. D., Cavazos, C., & Bemben, M. (2014). Tissue oxygenation, strength and lactate response to different blood flow restrictive pressures. Clinical Physiology and Functional Imaging, 34(4), 263–269. https://doi.org/10.1111/cpf.12090
  • Kaufman, M. P., & Rybicki, K. J. (1987). Discharge properties of group III and IV muscle afferents: Their responses to mechanical and metabolic stimuli. Circulation Research, 61(4 Pt 2), I60–5.
  • Kennedy, D. L., Kemp, H. I., Ridout, D., Yarnitsky, D., & Rice, A. S. C. (2016). Reliability of conditioned pain modulation: A systematic review. Pain, 157(11), 2410–2419. https://doi.org/10.1097/j.pain.0000000000000689
  • Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012
  • Leahy, S., Toomey, C., McCreesh, K., O’Neill, C., & Jakeman, P. (2012). Ultrasound measurement of subcutaneous adipose tissue thickness accurately predicts total and segmental body fat of young adults. Ultrasound in Medicine & Biology, 38(1), 28–34. https://doi.org/10.1016/j.ultrasmedbio.2011.10.011
  • Lima-Soares, F., Pessoa, K. A., Torres Cabido, C. E., Lauver, J., Cholewa, J., Rossi, F., & Zanchi, N. E. (2022). Determining the arterial occlusion pressure for blood flow restriction. The Journal of Strength & Conditioning Research, 36(4), 1120–1124. Publish Ah. https://doi.org/10.1519/JSC.0000000000003628
  • Loenneke, J. P., Kearney, M. L., Thrower, A. D., Collins, S., & Pujol, T. J. (2010). The acute response of practical occlusion in the knee extensors. Journal of Strength & Conditioning Research, 24(10), 2831–2834. https://doi.org/10.1519/JSC.0b013e3181f0ac3a
  • Loenneke, J. P., Thrower, A. D., Balapur, A., Barnes, J. T., & Pujol, T. J. (2012). Blood flow-restricted walking does not result in an accumulation of metabolites. Clinical Physiology and Functional Imaging, 32(1), 80–82. https://doi.org/10.1111/j.1475-097X.2011.01059.x
  • Luebbers, P. E., Fry, A. C., Kriley, L. M., & Butler, M. S. (2014). The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. Journal of Strength & Conditioning Research, 28(8), 2270–2280. https://doi.org/10.1519/JSC.0000000000000385
  • Miller, R. M., Galletti, B. A. R., Koziol, K. J., Freitas, E. D. S., Heishman, A. D., Black, C. D., Larson, D. J., Bemben, D. A., & Bemben, M. G. (2020). Perceptual responses: Clinical versus practical blood flow restriction resistance exercise. Physiology & Behavior, 227(May), 113137. https://doi.org/10.1016/j.physbeh.2020.113137
  • Morris, N. (2018). The use of blood flow restriction training in an injured elite swimmer on swimming performance and hypertrophy. Journal of Australian Strength and Conditioning, 26(1), 31–36.
  • Mouser, J. G., Ade, C. J., Black, C. D., Bemben, D. A., & Bemben, M. G. (2018). Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion. Clinical Physiology and Functional Imaging, 38(3), 425–430. https://doi.org/10.1111/cpf.12432
  • Mouser, J. G., Dankel, S. J., Jessee, M. B., Mattocks, K. T., Buckner, S. L., Counts, B. R., & Loenneke, J. P. (2017). A tale of three cuffs: The hemodynamics of blood flow restriction. European Journal of Applied Physiology, 117(7), 1493–1499. https://doi.org/10.1007/s00421-017-3644-7
  • Nasseri, N., Kleiser, S., Ostojic, D., Karen, T., & Wolf, M. (2016). Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy. Biomedical Optics Express, 7(11), 4605. https://doi.org/10.1364/BOE.7.004605
  • Niemeijer, V. M., Jansen, J. P., van Dijk, T., Spee, R. F., Meijer, E. J., Kemps, H. M. C., & Wijn, P. F. F. (2017). The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: The extent of the problem. Physiological Measurement, 38(3), 539–554. https://doi.org/10.1088/1361-6579/aa5dd5
  • Nir, R. R., & Yarnitsky, D. (2015). Conditioned pain modulation. Current Opinion in Supportive and Palliative Care, 9(2), 131–137. https://doi.org/10.1097/SPC.0000000000000126
  • Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., Abe, T., Nielsen, J. L., Libardi, C. A., Laurentino, G., Neto, G. R., Brandner, C., Martin-Hernandez, J., & Loenneke, J. (2019). Blood flow restriction exercise position stand: Considerations of methodology, application, and safety. Frontiers in Physiology, 10(MAY). https://doi.org/10.3389/fphys.2019.00533
  • Pelayo, P., Alberty, M., Sidney, M., Potdevin, F., & Dekerle, J. (2007). Aerobic potential, stroke parameters, and coordination in swimming front-crawl performance. International Journal of Sports Physiology & Performance, 2(4), 347–359. https://doi.org/10.1123/ijspp.2.4.347
  • Raimundo, J. A., Ribeiro, G., Lisbôa, F. D., Pereira, G. S., Loch, T., De Aguiar, R. A., Martins, E. C., & Caputo, F. (2020). The effects of predictive trials on critical stroke rate and critical swimming speed. The Journal of Sports Medicine and Physical Fitness, 60(10), 1329–1334. https://doi.org/10.23736/S0022-4707.20.10846-6
  • Richardson, R. S., Knight, D. R., Poole, D. C., Kurdak, S. S., Hogan, M. C., Grassi, B., & Wagner, P. D. (1995). Determinants of maximal exercise VO2, during single leg knee-extensor exercise in humans. American Journal of Physiology-Heart and Circulatory Physiology, 268(4), H1453–H1461. https://doi.org/10.1152/ajpheart.1995.268.4.h1453
  • Silva, J. C. G., Domingos-Gomes, J. R., Freitas, E. D. S., Neto, G. R., Aniceto, R. R., Bemben, M. G., Lima-dos-Santos, A., & Cirilo-Sousa, M. S. (2021). Physiological and perceptual responses to aerobic exercise with and without blood flow restriction. Journal of Strength & Conditioning Research, 35(9), 2479–2485. https://doi.org/10.1519/JSC.0000000000003178
  • Singer, T. J., Stavres, J., Elmer, S. J., Kilgas, M. A., Pollock, B. S., Kearney, S. G., & McDaniel, J. (2020). Knee extension with blood flow restriction: Impact of cuff pressure on hemodynamics. European Journal of Applied Physiology, 120(1), 79–90. https://doi.org/10.1007/s00421-019-04250-2
  • Steele, J., Fisher, J., McKinnon, S., & McKinnon, P. (2016). Differentiation between perceived effort and discomfort during resistance training in older adults: Reliability of trainee ratings of effort and discomfort, and reliability and validity of trainer ratings of trainee effort. Journal of Trainology, 6(1), 1–8. https://doi.org/10.17338/trainology.6.1_1
  • Wilson, J. M., Lowery, R. P., Joy, J. M., Loenneke, J.P., & Naimo, M.A. (2013). Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. Journal of Strength & Conditioning Research, 27(11), 3068–3075. https://doi.org/10.1519/JSC.0b013e31828a1ffa
  • Yamanaka, T., Farley, R. S., & Caputo, J. L. (2012). Occlusion training increases muscular strength in division IA football players. Journal of Strength & Conditioning Research, 26(9), 2523–2529. https://doi.org/10.1519/JSC.0b013e31823f2b0e
  • Zamparo, P., Bonifazi, M., Faina, M., Milan, A., Sardella, F., Schena, F., & Capelli, C. (2005). Energy cost of swimming of elite long-distance swimmers. European Journal of Applied Physiology, 94(5–6), 697–704. https://doi.org/10.1007/s00421-005-1337-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.