163
Views
0
CrossRef citations to date
0
Altmetric
Pages 546-554 | Received 14 Sep 2022, Accepted 22 Oct 2023, Published online: 15 Dec 2023

References

  • Andrade, L. S., David, G. B., Wilhelm, E. N., Pinto, S. S., & Alberton, C. L. (2021). Effect of high intensity interval treadmill exercise on subsequent lower and upper limb strength performance. Research Quarterly for Exercise & Sport, 94(1), 143–150. https://doi.org/10.1080/02701367.2021.1948954
  • Astley, C., Souza, D. B., & Polito, M. D. (2018). Acute specific effects of caffeine-containing energy drink on different physical performances in resistance-trained men. International Journal of Exercise Science, 11(4), 260–268.
  • Astorino, T. A., Martin, B. J., Schachtsiek, L., Wong, K., & Ng, K. (2011). Minimal effect of acute caffeine ingestion on intense resistance training performance. Journal of Strength & Conditioning Research, 25(6), 1752–1758. https://doi.org/10.1519/JSC.0b013e3181ddf6db
  • Bassini-Cameron, A., Sweet, E., Bottino, A., Bittar, C., Veiga, C., Cameron, L.-C., & Dantas, E. H. M. (2007). Effect of caffeine supplementation on haematological and biochemical variables in elite soccer players under physical stress conditions. British Journal of Sports Medicine, 41(8), 523–530. discussion 530. https://doi.org/10.1136/bjsm.2007.035147
  • Berryman, N., Mujika, I., & Bosquet, L. (2019). Concurrent training for sports performance: The 2 sides of the medal. International Journal of Sports Physiology and Performance, 14(3), 279–285. https://doi.org/10.1123/ijspp.2018-0103
  • Cadore, E. L., & Izquierdo, M. (2013). How to simultaneously optimize muscle strength, power, functional capacity, and cardiovascular gains in the elderly: An update. Age, 35(6), 2329–2344. https://doi.org/10.1007/s11357-012-9503-x
  • Cadore, E. L., Pinto, R. S., Lhullier, F. L. R., Correa, C. S., Alberton, C. L., Pinto, S. S., Almeida, A. P. V., Tartaruga, M. P., Silva, E. M., & Kruel, L. F. M. (2010). Physiological effects of concurrent training in elderly men. International Journal of Sports Medicine, 31(10), 689–697. https://doi.org/10.1055/s-0030-1261895
  • Clarke, N. D., Kornilios, E., & Richardson, D. L. (2015). Carbohydrate and caffeine mouth rinses do not affect maximum strength and muscular endurance performance. Journal of Strength & Conditioning Research, 29(10), 2926–2931. https://doi.org/10.1519/JSC.0000000000000945
  • Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: Do opposites distract? The Journal of Physiology, 595(9), 2883–2896. https://doi.org/10.1113/JP272270
  • Cox, G. R., Desbrow, B., Montgomery, P. G., Anderson, M. E., Bruce, C. R., Macrides, T. A., Martin, D. T., Moquin, A., Roberts, A., Hawley, J. A., & Burke, L. M. (2002). Effect of different protocols of caffeine intake on metabolism and endurance performance. Journal of Applied Physiology, 93(3), 93–990–9. v. https://doi.org/10.1152/japplphysiol.00249.2002
  • Da Silva, V. L., Messias, F. R., Zanchi, N. E., Gerlinger-Romero, F., Duncan, M. J., & Guimarães-Ferreira, L. (2015). Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. The Journal of Sports Medicine and Physical Fitness, 55(5), 383–389.
  • Davis, J. K., & Green, J. M. (2009). Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Medicine, 39(10), 813–832. https://doi.org/10.2165/11317770-000000000-00000
  • Del Coso, J., Muñoz, G., & Muñoz-Guerra, J. (2011). Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied Physiology, Nutrition, and Metabolism, 36(4), 555–561. https://doi.org/10.1139/h11-052
  • De Souza, E. O., Tricoli, V., Franchini, E., Paulo, A. C., Regazzini, M., & Ugrinowitsch, C. (2007). Acute effect of two aerobic exercise modes on maximum strength and strength endurance. The Journal of Strength & Conditioning Research, 21(4), 1286–1290. https://doi.org/10.1519/R-20686.1
  • Doherty, M., & Smith, P. M. (2004). Effects of caffeine ingestion on exercise testing: A meta-analysis. International Journal of Sport Nutrition and Exercise Metabolism, 14(6), 626–646. https://doi.org/10.1123/ijsnem.14.6.626
  • Doherty, M., Smith, P., Hughes, M., & Davison, R. (2004). Caffeine lowers perceptual response and increases power output during high-intensity cycling. Journal of Sports Sciences, 22(7), 637–643. https://doi.org/10.1080/02640410310001655741
  • Glaister, M., & Gissane, C. (2018). Caffeine and physiological responses to submaximal exercise: A meta-analysis. International Journal of Sports Physiology & Performance, 13(4), 402–411. https://doi.org/10.1123/ijspp.2017-0312
  • Gonçalves, L., de Sde, S., Painelli V de, S., Yamaguchi, G., Saunders, B., da Silva, R. P., Maciel, E., Artioli, G. G., Roschel, H., & Gualano, B. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of Applied Physiology, 123(1), 213–220. https://doi.org/10.1152/japplphysiol.00260.2017
  • Graham, T. E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine, 31(11), 785–807. https://doi.org/10.2165/00007256-200131110-00002
  • Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B. J., Bishop, D. J., & Pedisic, Z. (2020). Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. British Journal of Sports Medicine, 54(11), 681–688. https://doi.org/10.1136/bjsports-2018-100278
  • Grgic, J., & Mikulic, P. (2017). Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. European Journal of Sport Science, 17(8), 1029–1036. https://doi.org/10.1080/17461391.2017.1330362
  • Grgic, J., Trexler, E. T., Lazinica, B., & Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11. https://doi.org/10.1186/s12970-018-0216-0
  • Häfele, M. S., Alberton, C. L., Schaun, G. Z., Nunes, G. N., Brasil, B., Alves, M. M., Andrade, L. S., & Pinto, S. S. (2022). Aerobic and combined water-based trainings in older women: Effects on strength and cardiorespiratory outcomes. The Journal of Sports Medicine and Physical Fitness, 62(2), 177–183. https://doi.org/10.23736/S0022-4707.21.12035-3
  • Herrmann-Frank, A., Lüttgau, H. C., & Stephenson, D. G. (1999). Caffeine and excitation-contraction coupling in skeletal muscle: A stimulating story. Journal of Muscle Research and Cell Motility, 20(2), 223–236. https://doi.org/10.1023/a:1005496708505
  • Howley, E. T., Bassett, D. R. J., & Welch, H. G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports and Exercise, 27(9), 1292–1301. https://doi.org/10.1249/00005768-199509000-00009
  • Jackson, A. S., & Pollock, M. L. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(3), 497–504. https://doi.org/10.1079/bjn19780152
  • Jerônimo, D. P., Diego Germano, M., Baccin Fiorante, F., Boreli, L., da Silva Neto, L. V., de Souza, R. A., da Silva, F. F., & de Morais, A. C. (2017). Caffeine potentiates the ergogenic effects of creatine. Journal of Exercise Physiology Online, 20(6), 66–77.
  • Jones, T. W., Howatson, G., Russell, M., & French, D. N. (2017). Effects of strength and endurance exercise order on endocrine responses to concurrent training. European Journal of Sport Science, 17(3), 326–334. https://doi.org/10.1080/17461391.2016.1236148
  • Kraemer, W. J., Patton, J. F., Gordon, S. E., Harman, E. A., Deschenes, M. R., Reynolds, K., Newton, R. U., Triplett, N. T., & Dziados, J. E. (1995). Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 78(3), 976–989. https://doi.org/10.1152/jappl.1995.78.3.976
  • Laursen, P., & Buchheit, M. (2019). Science and application of high-intensity interval training (1st ed.). Human Kinetics.
  • Leveritt, M., Abernethy, P. J., Barry, B. K., & Logan, P. A. (1999). Concurrent strength and endurance training. A review. Sports Medicine, 28(6), 413–427. https://doi.org/10.2165/00007256-199928060-00004
  • Lopes-Silva, J. P., Felippe, L. J. C., Silva-Cavalcante, M. D., Bertuzzi, R., & Lima-Silva, A. (2014). Caffeine ingestion after rapid weight loss in judo athletes reduces perceived effort and increases plasma lactate concentration without improving performance. Nutrients, 6(7), 2931–2945. https://doi.org/10.3390/nu6072931
  • Loy, B. D., O’Connor, P. J., Lindheimer, J. B., & Covert, S. F. (2015). Caffeine is ergogenic for Adenosine A2A receptor gene (ADORA2A) T allele homozygotes: A Pilot study. Journal of Caffeine Research, 5(2), 73–81. https://doi.org/10.1089/jcr.2014.0035
  • McCarthy, J. P., Pozniak, M. A., & Agre, J. C. (2002). Neuromuscular adaptations to concurrent strength and endurance training. Medicine & Science in Sports and Exercise, 34(3), 511–519. https://doi.org/10.1097/00005768-200203000-00019
  • McGuigan, M. R., & Foster, C. (2004). A new approach to monitoring resistance training. Strength & Conditioning Journal, 26(6), 42–47. https://doi.org/10.1519/00126548-200412000-00008
  • Mijwel, S., Backman, M., Bolam, K. A., Olofsson, E., Norrbom, J., Bergh, J., Sundberg, C. J., Wengström, Y., & Rundqvist, H. (2018). Highly favorable physiological responses to concurrent resistance and high-intensity interval training during chemotherapy: The OptiTrain breast cancer trial. Breast Cancer Research and Treatment, 169(1), 93–103. https://doi.org/10.1007/s10549-018-4663-8
  • Murlasits, Z., Kneffel, Z., & Thalib, L. (2018). The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis. Journal of Sports Sciences, 36(11), 1212–1219. https://doi.org/10.1080/02640414.2017.1364405
  • Paton, C., Costa, V., & Guglielmo, L. (2015). Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. Journal of Sports Sciences, 33(10), 1076–1083. https://doi.org/10.1080/02640414.2014.984752
  • Potgieter, S., Wright, H. H., & Smith, C. (2018). Caffeine improves triathlon performance: A field study in males and females. International Journal of Sport Nutrition and Exercise Metabolism, 28(3), 228–237. https://doi.org/10.1123/ijsnem.2017-0165
  • Richardson, D. L., & Clarke, N. D. (2016). Effect of coffee and caffeine ingestion on resistance exercise performance. Journal of Strength & Conditioning Research, 30(10), 2892–2900. https://doi.org/10.1519/JSC.0000000000001382
  • Sabag, A., Najafi, A., Michael, S., Esgin, T., Halaki, M., & Hackett, D. (2018). The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: A systematic review and meta-analysis. Journal of Sports Sciences, 36(21), 2472–2483. https://doi.org/10.1080/02640414.2018.1464636
  • Sabblah, S., Dixon, D., & Bottoms, L. (2015). Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comparative Exercise Physiology, 11(2), 89–94. https://doi.org/10.3920/CEP150010
  • Schaun, G. Z., Pinto, S. S., Silva, M. R., Dolinski, D. B., & Alberton, C. L. (2018). Whole-body high-intensity interval training induce similar cardiorespiratory adaptations compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. Journal of Strength & Conditioning Research, 32(10), 2730–2742. https://doi.org/10.1519/JSC.0000000000002594
  • Siri, W. E. (1993). Body composition from fluid spaces and density: Analysis of methods. Nutrition, 9(5), 480–91. discussion 480, 492.
  • Smirmaul, B. P. C., de Moraes, A. C., Angius, L., & Marcora, S. M. (2017). Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. European Journal of Applied Physiology, 117(1), 27–38. https://doi.org/10.1007/s00421-016-3496-6
  • Southward, K., Rutherfurd-Markwick, K., Badenhorst, C., & Ali, A. (2018). The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients 10(10), 1352. https://doi.org/10.3390/nu10101352
  • Souza, D. B., Duncan, M., & Polito, M. D. (2019). Improvement of lower-body resistance-exercise performance with blood-flow restriction following acute caffeine intake. International Journal of Sports Physiology & Performance, 14(2), 216–221. https://doi.org/10.1123/ijspp.2018-0224
  • Tallis, J., Muhammad, B., Islam, M., & Duncan, M. J. (2016). Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle & Nerve, 54(3), 479–486. https://doi.org/10.1002/mus.25060
  • Timmins, T. D., & Saunders, D. H. (2014). Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. Journal of Strength & Conditioning Research, 28(11), 3239–3244. https://doi.org/10.1519/JSC.0000000000000447
  • Trexler, E. T., Smith-Ryan, A. E., Roelofs, E. J., Hirsch, K. R., & Mock, M. G. (2016). Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science, 16(6), 702–710. https://doi.org/10.1080/17461391.2015.1085097
  • Trumbo, P., Schlicker, S., Yates, A. A., & Poos, M. (2002). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association, 102(11), 1621–1630. https://doi.org/10.1016/s0002-8223(02)90346-9
  • Vechin, F. C., Conceição, M. S., Telles, G. D., Libardi, C. A., & Ugrinowitsch, C. (2021). Interference phenomenon with concurrent strength and high-intensity interval training-based aerobic training: An updated model. Sports Medicine, 51(4), 599–605. https://doi.org/10.1007/s40279-020-01421-6
  • Warren, G. L., Park, N. D., Maresca, R. D., McKibans, K. I., & Millard-Stafford, M. L. (2010). Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Medicine & Science in Sports and Exercise, 42(7), 1375–1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8
  • Womack, C. J., Saunders, M. J., Bechtel, M. K., Bolton, D. J., Martin, M., Luden, N. D., Dunham, W., & Hancock, M. (2012). The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. Journal of the International Society of Sports Nutrition, 9(1), 7. https://doi.org/10.1186/1550-2783-9-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.