1,245
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effects of high and low C:P foods on the feeding of Daphnia pulex

ORCID Icon, , &
Pages 455-468 | Received 22 Jun 2018, Accepted 21 Sep 2018, Published online: 10 Jun 2019

References

  • Acharya K, Kyle M, Elser JJ. 2004. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol Oceanogr. 49(3):656–665.
  • Bednarska A, Pietrzak B, Pijanowska J. 2014. Effect of poor manageability and low nutritional value of cyanobacteria on Daphnia magna life history performance. J Plankton Res. 36(3):838–847.
  • Boersma M, Stelzer CP. 2000. Response of a zooplankton community to the addition of unsaturated fatty acids: an enclosure study. Freshwater Biol. 45(2):179–188.
  • Brooks JL, Dodson SI. 1965. Predation, body size, and composition of plankton. Science. 150(3692):28–35.
  • Bukovinszky T, Verschoor AM, Helmsing NR, Bezemer TM, Bakker ES, Vos M, Domis LNDS. 2012. The good, the bad and the plenty: interactive effects of food quality and quantity on the growth of different Daphnia species. PLoS One. 7(9):1–8.
  • Costa SMD, Ferrão-Filho AS, Azevedo SMFO. 2013. Effects of saxitoxin- and non-saxitosin-producing strains of the cyanobacterium Cylindrospermopsis raciborskii on the fitness of temperate and tropical cladocerans. Harmful Algae. 28:55–63.
  • Currier CM, Elser JJ. 2017. Beyond monoculture stoichiometry studies: assessing growth, respiration, and feeding responses of three Daphnia species to P-enriched, low C:P lake seston. Inland Waters. 7(3):348–357.
  • Darchambeau F, Faerøvig PJ, Hessen DO. 2003. How Daphnia copes with excess carbon in its food. Oecologia. 136(3):336–346.
  • DeMott WR. 2003. Implications of element deficits for zooplankton growth. Hydrobiologia. 491(1–3):177–184.
  • Elser JJ, Kyle M, Learned J, McCrackin ML, Peace A, Steger L. 2016. Life on the stoichiometric knife-edge: effects of high and low food C:P ratio on growth, feeding, and respiration in three Daphnia species. Inland Waters. 6(2):36–146.
  • Fabre A, Lacerot G, Rodriguez R, Carolina DPM, Soares S, Magalhães VFD, Bonilla S. 2017. South American PSP toxin-producing Cylindrospermopsis raciborskii (Cyanobacteria) decreases clearance rates of cladocerans more than copepods. Hydrobiologia. 785(1):61–69.
  • Freitas EC, Pinheiro C, Rocha O, Loureiro S. 2014. Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of Daphnia magna Straus exposed to hepatotoxic and neurotoxic cyanobacterial extracts. Harmful Algae. 31:143–152.
  • Gall A, Kainz MJ, Rasconi S. 2017. Daphnia magna fitness during low food supply under different water temperature and brownification scenarios. J Limnol. 76(1):161–169.
  • Gliwicz ZM, Lampert W. 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology. 71(2):691–702.
  • Gulati RD, Bronkhorst M, Donk EV. 2001. Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. J Plankton Res. 23(7):705–718.
  • Guo NC, Xie P. 2006. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. Environ Pollut. 143(3):513–518.
  • He XJ, Wang WX. 2007. Kinetics of phosphorus in Daphnia at different food concentrations and carbon: phosphorus ratios. Limnol Oceanogr. 52(1):395–406.
  • He XJ, Wang WX. 2008. Stoichiometric regulation of carbon and phosphorus in P deficient Daphnia magna. Limnol Oceanogr. 53(1):244–254.
  • Hessen DO, Elser JJ, Sterner RW, Urabe J. 2013. Ecological stoichiometry-an elementary approach using basic principles. Limnol Oceanogr. 58(6):2219–2236.
  • Hood JM, Sterner RW. 2014. Carbon and phosphorus linkages in Daphnia growth are determined by growth rate, not species or diet. Funct Ecol. 28(5):1156–1165.
  • Jiang XD, Zhang LH, Liang HS, Li QM, Zhao YL, Chen LQ, Yang W, Zhao SY. 2013. Resistance variation within a Daphnia pulex population against toxic cyanobacteria. J Plankton Res. 35(5):1177–1181.
  • Kirk KL, Gilbert JJ. 1992. Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology. 73(6):2208–2217.
  • Lukas M, Sperfeld E, Wacker A. 2011. Growth Rate Hypothesis does not apply across colimiting treatments: cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore. Funct Ecol. 25(6):1206–1214.
  • Meng M, Deng DG, Zhang XL, Ge Q, Zhang K. 2014. The influence of phosphorus concentration on the population dynamics and resting egg formation of two cladocerans. J Freshwater Ecol. 3:38–396.
  • Panosso R, Lürling M. 2010. Daphnia magna feeding on Cylindrospermopsis raciborskii: the role of food composition, filament length and body size. J Plankton Res. 32(10):1393–1404.
  • Peters RH. 1984. Methods for the study of feeding, grazing and assimilation by zooplankton. In: Downing JA, Rigler FH, editors. A manual on methods for the assessment of secondary productivity in fresh waters: IBP Handbook 17, 2nd ed. Blackwell: Oxford, p. 336–412.
  • Plath K, Boersma M. 2001. Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology. 82:1260–1269.
  • Prater C, Wagner ND, Frost PC. 2017. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology. 98:1399–1408.
  • Rangel LM, Ger KA, Silva LHS, Soares MCS, Faassen EJ, Lürling M. 2016. Toxicity overrides morphology on Cylindrospermopsis raciborskii grazing resistance to the calanoid copepod Eudiaptomus gracilis. Microb Ecol. 71(4):835–844.
  • Rippka RJ, Deruelles JB, Waterbury M, Herdman RY, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 111(1):1–61.
  • Rollwagen-Bollens G, Bollens SM, Gonzalez A, Zimmerman J, Lee T, Emerson J. 2013. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia. 705(1):101–118.
  • Sahuquillo M, Melão MGG, Miracle MR. 2007. Low filtering rates of Daphnia magna in a hypertrophic lake: laboratory and in situ experiments using synthetic microspheres. Hydrobiologia. 594(1):141–152.
  • Samel A, Ziegenfuss M, Goulden CE, Banks S, Baer KN. 1999. Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media. Ecotox Environ Safe. 43(1):103–110.
  • Sarnelle O, Wilson AE. 2005. Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr. 50(5):1565–1570.
  • Sikora A, Dawidowicz P. 2017. Breakage of cyanobacterial filaments by small- and large sized Daphnia: are there any temperature-dependent differences? Hydrobiologia. 798(1):119–126.
  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry-the biology of elements from molecules to the biosphere. Princeton (NJ): Princeton University Press.
  • Suzuki-Ohno Y, Kawata M, Urabe J. 2012. Optimal feeding under stoichiometric constraints: a model of compensatory feeding with functional response. Oikos. 121(4):569–578.
  • Urabe J, Elser JJ, Kyle M, Yoshida T, Sekino T, Kawabata Z. 2002. Herbivorous animals can mitigate unfavorable ratios of energy and material supplies by enhancing nutrient recycling. Ecol Letters. 5(2):177–185.
  • Urabe J, Shimizu Y, Yamaguchi T. 2018. Understanding the stoichiometric limitation of herbivore growth: the importance of feeding and assimilation flexibilities. Ecol Lett. 21(2):197–206.
  • Van Donk E, Lurling M, Hessen DO, Lokhorst GM. 1997. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr. 42(2):357–364.
  • Wagner ND, Yang Z, Scott AB, Frost PC. 2017. Effects of algal food quality on free amino acid metabolism of Daphnia. Aquat Sci. 79(1):127–137.
  • Wilson AE, Sarnelle O, Tillmanns AR. 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol Oceanogr. 51(4):1915–1924.
  • Zhu JY, Lu KH, Sun SZ, Zhang KX. 2013. Foraging inhibition in two c ladocerans feeding on Microcystis aeruginosa. Clean Soil Air Water. 41(7):645–650.