106
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Porcine Müller Glial Cells Increase Expression of BKCa Channels in Retinal Detachment

, , , , , , & show all
Pages 143-151 | Received 18 Aug 2006, Accepted 22 Nov 2006, Published online: 02 Jul 2009

REFERENCES

  • Newman E A, Reichenbach A. The Müller cell: a functional element of the retina. Trends Neurosci 1996; 19: 307–317
  • Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25: 397–424
  • Newman E A, Frambach D A, Odette L L. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 1984; 225: 1174–1175
  • Reichenbach A, Henke A, Eberhardt W, et al. K+ ion regulation in retina. Can J Physiol Pharmacol 1992; 70: S239–S247
  • Newman E A. Membrane physiology of retinal glial (Müller) cells. J Neurosci 1985; 5: 2225–2239
  • Newman E A. Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 1993; 13: 3333–3345
  • Puro D G, Roberge F, Chan C C. Retinal glial cell proliferation and ion channels: a possible link. Invest Ophthalmol Vis Sci 1989; 30: 521–529
  • Chao T I, Henke A, Reichelt W, et al. Three distinct types of voltage-dependent K+ channels are expressed by Müller (glial) cells of the rabbit retina. Pflügers Arch 1994; 426: 51–60
  • Bringmann A, Faude F, Reichenbach A. Mammalian retinal glial (Müller) cells express large-conductance Ca2 + -activated K+ channels that are modulated by Mg2 + and pH, and activated by protein kinase A. Glia 1997; 19: 311–323
  • Kofuji P, Ceelen P, Zahs K R, et al. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 2000; 20: 5733–5740
  • Francke M, Faude F, Pannicke T, et al. Electrophysiology of rabbit Müller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 2001; 42: 1072–1079
  • Uhlmann S, Bringmann A, Uckermann O, et al. Early glial cell reactivity in experimental retinal detachment: effect of suramin. Invest Ophthalmol Vis Sci 2003; 44: 4114–4122
  • Pannicke T, Iandiev I, Uckermann O, et al. A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 2004; 26: 493–502
  • Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic-swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 2006; 55: 633–639
  • Iandiev I, Uckermann O, Pannicke T, et al. Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci 2006; 47: 2161–2171
  • Francke M, Pannicke T, Biedermann B, et al. Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 1997; 20: 210–218
  • Bringmann A, Francke M, Pannicke T, et al. Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 1999; 40: 3316–3323
  • Bringmann A, Kohen L, Wolf S, et al. Age-related decrease of potassium currents in human retinal glial (Müller) cells. Can J Ophthalmol 2003; 38: 464–468
  • Bringmann A, Francke M, Pannicke T, et al. Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 2000; 29: 35–44
  • Kodal H, Weick M, Moll V, et al. Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Müller glial cells. Invest Ophthalmol Vis Sci. 2000; 41: 4262–4267
  • Bringmann A, Pannicke T, Moll V, et al. Upregulation of P2X7 receptor currents in Müller glial cells during proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2001; 42: 860–867
  • Moll V, Weick M, Milenkovic I, et al. P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 2002; 43: 766–773
  • Cook B, Lewis G P, Fisher S K, Adler R. Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 1995; 36: 990–996
  • Mervin K, Valter K, Maslim J, et al. Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 1999; 128: 155–164
  • Lewis G P, Linberg K A, Fisher S K. Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest Ophthalmol Vis Sci 1998; 39: 424–434
  • Marc R E, Murry R F, Fisher S K, et al. Amino acid signatures in the detached cat retina. Invest Ophthalmol Vis Sci 1998; 39: 1694–1702
  • Faude F, Francke M, Makarov F, et al. Experimental retinal detachment causes widespread and multilayered degeneration in rabbit retina. J Neurocytol 2001; 30: 379–390
  • Coblentz F E, Radeke M J, Lewis G P, Fisher S K. Evidence that ganglion cells react to retinal detachment. Exp Eye Res 2003; 76: 333–342
  • Anderson D H, Guerin C J, Erickson P A, et al. Morphological recovery in the reattached retina. Invest Ophthalmol Vis Sci 1986; 27: 168–183
  • Fisher S K, Erickson P A, Lewis G P, Anderson D H. Intraretinal proliferation induced by retinal detachment. Invest Ophthalmol Vis Sci 1991; 32: 1739–1748
  • Lewis G P, Guerin C J, Anderson D H, et al. Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am J Ophthalmol 1994; 118: 368–376
  • Lewis G P, Mervin K, Valter K, et al. Limiting the proliferation and reactivity of retinal Müller cells during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 1999; 128: 165–172
  • Geller S F, Lewis G P, Fisher S K. FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells. Invest Ophthalmol Vis Sci 2001; 42: 1363–1369
  • Geller S F, Lewis G P, Anderson D H, Fisher S K. Use of the MIB-1 antibody for detecting proliferating cells in the retina. Invest Ophthalmol Vis Sci 1995; 36: 737–744
  • Erickson P A, Guerin C J, Fisher S K. Tritiated uridine labeling of the retina: changes after retinal detachment. Exp Eye Res 1990; 51: 153–158
  • Lewis G P, Erickson P A, Guerin C J, et al. Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 1992; 12: 3968–3978
  • Rattner A, Nathans J. The genomic response to retinal diseases and injury: evidence for endothelin signaling from photoreceptors to glia. J Neurosci 2005; 25: 4540–4549
  • Lewis G P, Fisher S K. Müller cell outgrowth after retinal detachment: association with cone photoreceptors. Invest Ophthalmol Vis Sci. 2000; 41: 1542–1545
  • Gribkoff V K, Starrett J E, Dworetzky S I. The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels. Adv Pharmacol 1997; 37: 319–348
  • Bringmann A, Reichenbach A. Heterogeneous expression of Ca2 +-dependent K+ currents by Müller glial cells. Neuroreport 1997; 8: 3841–3845
  • Milenkovic I, Weick M, Wiedemann P, et al. P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci. 2003; 44: 1211–1220
  • Schopf S, Bringmann A, Reichenbach A. Protein kinases A and C are opponents in modulating glial Ca2 +-activated K+ channels. Neuroreport 1999; 10: 1323–1327
  • Bringmann A, Skatchkov S N, Biedermann B, et al. Alterations of potassium channel activity in retinal Müller glial cells induced by arachidonic acid. Neuroscience 1998; 86: 1291–1306
  • Ransom C B, Sontheimer H. BK channels in human glioma cells. J Neurophysiol 2001; 85: 790–803
  • Eaton M J, Skatchkov S N, Brune A, et al. SURI and Kir6.1 subunits of KATP-channels are co-localized in retinal glial (Müller) cells. Neuroreport 2002; 13: 57–60
  • Skatchkov S N, Eaton M J, Shuba Y M, et al. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells. Glia 2006; 53: 266–276
  • Uckermann O, Wolf A, Kutzera F, et al. Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. J Neurosci Res 2006; 83: 538–550
  • Newman E A. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 2005; 25: 5502–5510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.