250
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Contribution of Calpain to Cellular Damage in Human Retinal Pigment Epithelial Cells Cultured with Zinc Chelator

, , &
Pages 565-573 | Received 06 Oct 2006, Accepted 21 Mar 2007, Published online: 02 Jul 2009

REFERENCES

  • Zinn K M, Benjamin-Henkind J V. Anatomy of the human retinal pigment epithelium. The Retinal Pigment Epithelium, K M Zinn, M F Marmor. Harvard University Press, Cambridge 1979; 3–31
  • Hogan M J, Alvarado J A, Weddell J E. The retinal pigment epithelium. Histology of the Human Eye, M J Hogan, J A Alvarado, J E Weddell. WB Saunders, Philadelphia 1971; 405–423
  • Bosch E, Horwitz J, Bok D. Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem 1993; 41: 253–263
  • Bok D, Hall M O. The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 1971; 49: 664–682
  • Bressler N M, Bressler S B, Fine S L. Age-related macular degeneration. Surv Ophthalmol 1988; 32: 375–413
  • Mitchell P, Smith W, Attebo K, Wang J J. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 1995; 102: 1450–1460
  • Hogan M J. Role of the retinal pigment epithelium in macular diseas. Trans Am Acad Ophthalmol Otolaryngol 1972; 76: 64–80
  • Newsome D A, Swartz M, Leone N C, Elston R C, Miller E. Oral zinc in macular degeneration. Arch Ophthalmol 1988; 106: 192–198
  • Tate D J, Miceli M V, Newsome D A, Alcock N W, Oliver P D. Influence of zinc on selected cellular functions of cultured human retinal pigment epithelium. Curr Eye Res. 1995; 14: 897–903
  • Klein R. Epidemiology. Age-Related Macular Degeneration, J W Berger, S L Fine, M G Maguire. Mosby, St Louis 1999; 31–55
  • van d er, Schaft T L, de Bruijn W C, Mooy C M, Ketelaars D A, de Jong P T. Element analysis of the early stages of age-related macular degeneration. Arch Ophthalmol 1992; 110: 389–394
  • Mares-Perlman J A, Klein R, Klein B E, et al. Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol 1996; 114: 991–997
  • USA Brown N A, Bron A J, Harding J J, Dewar H M. Nutrition supplements and the eye. Eye 1998; 12: 127–133
  • Tate D J, Jr., Miceli M V, Newsome D A. Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells. Free Radic Biol Med 1999; 26: 704–713
  • Hyun H J, Sohn J H, Ha D W, Ahn Y H, Koh J K, Yoon Y H. Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2001; 42: 460–465
  • Squier M, Miller A C, Malkinson A M, Cohe J J. Calpain activation in apoptosis. J Cell Physiol 1994; 159: 229–237
  • Martin S J, O'Brien G A, Nishioka W K, et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 1995; 270: 6425–6428
  • McGinnis K M, Whitton M M, Gnegy M E, Wang K KW. Calcium/calmodulin-dependent protein kinase IV is cleaved by caspace-3 and calpain in SH-SY5Y human neuroblastroma cells undergoing apoptosis. J Biol Chem 1998; 3: 19993–20000
  • Tamada Y, Fukiage C, Daibo S, Yoshida Y, Azuma M, Shearer T R. Involvement of calpain in hypoxia-induced damage in rat retina in vitro. Comp Biochem Physiol 2002; 131: 221–225
  • Tamada Y, Nakajima E, Nakajima T, Shearer T R, Azuma M. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Res 2005; 1050: 148–155
  • Sakamoto Y, Nakajima T, Fukiage C, et al. Involvement of calpain isoforms in ischemia-reperfusion injury in rat retina. Curr Eye Res 2000; 21: 571–580
  • Azuma M, Sakamoto-Mizutani K, Nakajima T, Kanaami-Daibo S, Tamada Y, Shearer T R. Involvement of calpain isoforms in retinal degeneration in WBN/Kob rats. Comp Med 2004; 54: 533–542
  • Sharma A K, Rohrer B. Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 2004; 279: 35564–35572
  • Pffefer B A. Improved methodology for cell culture of human and monkey retinal pigment epithelium. Progress in retinal research, N N Osborne, G Chader. Pergamon Press, Oxford 1990; vol 10: 251–291
  • Ando A, Ueda M, Uyama M, Masu Y, Ito S. Enhancement of dedifferentiation and myoid differentiation of retinal pigment epithelial cells by platelet derived growth factor. Br J Ophthalmol 2000; 84: 1306–1311
  • Inoue J, Nakamura M, Cui Y S, Sakai Y, et al. Structure-activity relationship study and drug profile of N-(4-fluorophenylsulfonyl)-L-valyl-L-leucinal (SJA6017) as a potent calpain inhibitor. J Med Chem 2003; 46: 868–871
  • Frankel A, Man S, Elliott P, Adams J, Kerbel R S. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 2000; 6: 3719–3728
  • Verdaguer E, Alvira D, Jimenez A, Rimbau V, Camins A, Pallas M. Inhibition of the cdk5/MEF2 pathway is involved in the antiapoptotic properties of calpain inhibitors in cerebellar neurons. Br J Pharmacol. 2005; 145: 1103–1111
  • Koh J Y, Choi D W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 1987; 20: 83–90
  • David L L, Varnum M D, Lampi K J, Shearer T R. Calpain II in human lens. Invest Ophthalmol Vis Sci 1989; 30: 269–275
  • Racer K J, Posner A, Wang K KW. Casein zymography: a method to study mu-calpain, m-calpain, and their inhibitory agents. Arch Biochem Biophys 1995; 319: 211–216
  • Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25: 402–408
  • Schoenwaelder S M, Kulkarni S, Salem H H, et al. Distinct substrate specificities and functional roles for the 78- and 76-kDa forms of mu-calpain in human platelets. J Biol Chem 1997; 272: 24876–24884
  • Azuma M, Fukiage C, David L L, Shearer T R. Activation of calpain in lens: a review and proposed mechanism. Exp Eye Res 1997; 64: 529–538
  • Nakamura Y, Fukiage C, Ma H, Shih M, Azuma M, Shearer T R. Decreased sensitivity of lens-specific calpain Lp82 to calpastatin inhibitor. Exp Eye Res 1999; 69: 155–162
  • Goll D E, Thompson V F, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83: 731–801
  • Wang K KW, Nath R, Posner A, et al. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc Natl Acad Sci USA 1996; 93: 6687–6692
  • Fukiage C, Azuma M, Nakamura Y, Tamada Y, Nakamura M, Shearer T R. SJA6017, a newly synthesized peptide aldehyde inhibitor of calpain: amelioration of cataract in cultured rat lenses. Biochim Biophys Acta 1997; 1361: 304–312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.