140
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Captopril Inhibits Capillary Degeneration in the Early Stages of Diabetic Retinopathy

, , &
Pages 883-889 | Received 11 Mar 2007, Accepted 18 Jul 2007, Published online: 02 Jul 2009

REFERENCES

  • Chaturvedi N, Sjolie A K, Stephenson J M, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet 1998; 351: 28–31
  • UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998; 317: 703–713
  • Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000; 52: 11–34
  • Stec D E, Sigmund C D. Physiological insights from genetic manipulation of the renin-angiotensin system. News Physiol Sci 2001; 16: 80–84
  • Chung O, Kuhl H, Stoll M, Unger T. Physiological and pharmacological implications of AT1 versus AT2 receptors. Kidney Int Suppl 1998; 67: S95–S99
  • Zhang J Z, Gao L, Widness M, Xi X, Kern T S. Captopril inhibits glucose accumulation in retinal cells in diabetes. Invest Ophthalmol Vis Sci. 2003; 44: 4001–4005
  • Zheng L, Szabo C, Kern T S. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes. 2004; 53: 2960–2967
  • Joussen A M, Poulaki V, Le M L, Koizumi K, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 2004; 18: 1450–1452
  • Chen W, Jump D B, Grant M B, Esselman W J, Busik J V. Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 2003; 44: 5016–5022
  • Voyta J C, Via D P, Butterfield C E, Zetter B R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 1984; 99: 2034–2040
  • Zhang J Z, Abbud W, Prohaska R, Ismail-Beigi F. Overexpression of stomatin depresses GLUT-1 glucose transporter activity. Am J Physiol Cell Physiol 2001; 280: C1277–1283
  • Xi X, Han J, Zhang J Z. Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. J Biol Chem 2001; 276: 41029–41034
  • Bai N, Tang S, Ma J, Luo Y, Lin S. Increased expression of intercellular adhesion molecule-1, vascular cellular adhesion molecule-1 and leukocyte common antigen in diabetic rat retina. Yan Ke Xue Bao 2003; 19: 176–183
  • Hernandez C, Carrasco E, Garcia-Arumi J, Maria Segura R, Simo R. Intravitreous levels of hepatocyte growth factor/scatter factor and vascular cell adhesion molecule-1 in the vitreous fluid of diabetic patients with proliferative retinopathy. Diabetes Metab 2004; 30: 341–346
  • Wilkinson-Berka J L. Diabetes and retinal vascular disorders: role of the reninangiotensin system. Expert Rev Mol Med. 2004; 6: 1–18
  • Wilkinson-Berka J L, Tan G, Jaworski K, Ninkovic S. Valsartan but not atenolol improves vascular pathology in diabetic Ren-2 rat retina. Am J Hypertens 2007; 20: 423–430
  • Nagai N, Noda K, Urano T, et al. Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci. 2005; 46: 1078–1084
  • Moravski C J, Kelly D J, Cooper M E, et al. Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Hypertension 2000; 36: 1099–1104
  • Sjolie A K, Chaturvedi N. The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy. J Hum Hypertens 2002; 16: S42–46, (Suppl 3)
  • Kern T S, Miller C M, Du Y, et al. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes. 2007; 56: 373–37
  • Vincent J A, Mohr S. Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 2007; 56: 224–23
  • Kern T S, Engerman R L. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes. 2001; 50: 1636–1642
  • Joussen A M, Poulaki V, Mitsiades N. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 2002; 16: 438–440
  • Cheng Z J, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Med Sci Monit 2005; 11: RA194–205
  • Kim J A, Berliner J A, Nadler J L. Angiotensin II increases monocyte binding to endothelial cells. Biochem Biophys Res Commun 1996; 226: 862–868
  • Krejcy K, Eichler H G, Jilma B. Influence of angiotensin II on circulating adhesion molecules and blood leukocyte count in vivo. Can J Physiol Pharmacol 1996; 74: 9–14
  • Tummala P E, Chen X L, Sundell C L, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin-angiotensin system and atherosclerosis. Circulation 1999; 100: 1223–1229
  • Tayeh M A, Scicli A G. Angiotensin II and bradykinin regulate the expression of P-selectin on the surface of endothelial cells in culture. Proc Assoc Am Physicians 1998; 110: 412–421
  • Alvarez A, Cerda-Nicolas M, Naim Abu Nabah Y, et al. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 2004; 104: 402–408
  • Mori F, Hikichi T, Nagaoka T, et al. Inhibitory effect of losartan, an AT1 angiotensin II receptor antagonist, on increased leucocyte entrapment in retinal microcirculation of diabetic rats. Br J Ophthalmol 2002; 86: 1172–1174
  • Costanzo A, Moretti F, Burgio V L, et al. Endothelial activation by angiotensin II through NFkappaB and p38 pathways: Involvement of NFkappaB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. J Cell Physiol 2003; 195: 402–410
  • Soehnlein O, Schmeisser A, Cicha I, et al. ACE inhibition lowers angiotensin-II-induced monocyte adhesion to HUVEC by reduction of p65 translocation and AT 1 expression. J Vasc Res 2005; 42: 399–407
  • Pueyo M E, Gonzalez W, Nicoletti A, et al. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20: 645–651
  • Liu H Q, Wei X B, Sun R, et al. Angiotensin II stimulates intercellular adhesion molecule-1 via an AT1 receptor/nuclear factor-kappaB pathway in brain microvascular endothelial cells. Life Sci. 2006; 78: 1293–129

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.