675
Views
90
CrossRef citations to date
0
Altmetric
Mini Review

Immune Mechanisms of Corneal Allograft Rejection

Pages 1005-1016 | Received 27 Aug 2007, Accepted 24 Oct 2007, Published online: 02 Jul 2009

REFERENCES

  • Kissam R. Ceratoplastice in man. New York Journal of Medicine 1844; 2: 281–289
  • May C H. Transplantation of a rabbit's eye into the human orbit. Arch Ophthalmol. 1887; 16: 47–53
  • Zirm E. Eine erfolgreiche totale Keratoplastik. Albrecht von Graefes Arch Ophthalmol. 1906; 64: 580–593
  • Darlington J K, Adrean S D, Schwab I R. Trends of penetrating keratoplasty in the United States from 1980 to 2004. Ophthalmology 2006; 113: 2171–2175
  • Group CCTSR. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. Arch Ophthalmol 1992; 110: 1392–1403
  • Billingham R E, Krohn P L, Medawar P B. Effect of cortisone on survival of skin homografts in rabbits. Br Med J. 1951; 1: 1157–1163
  • Niederkorn J Y. The immune privilege of corneal allografts. Transplantation 1999; 67: 1503–1508
  • Niederkorn J Y. Mechanisms of corneal graft rejection: The sixth annual Thygeson Lecture, presented at the Ocular Microbiology and Immunology Group meeting, October 21, 2000. Cornea 2001; 20: 675–679
  • Coster D J, Williams K A. The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol. 2005; 140: 1112–1122
  • Maumenee A. The influence of donor-recipient sensitization on corneal grafts. Am J Ophthalmol. 1951; 34: 142–152
  • Khodadoust A A, Silverstein A M. Transplantation and rejection of individual cell layers of the cornea. Invest Ophthalmol. 1969; 8: 180–195
  • Khodadoust A A, Silverstein A M. Induction of corneal graft rejection by passive cell transfer. Invest Ophthalmol. 1976; 15: 89–95
  • Pepose J S, Nestor M S, Gardner K M, Foos R Y, Pettit T H. Composition of cellular infiltrates in rejected human corneal allografts. Graefes Arch Clin Exp Ophthalmol. 1985; 222: 128–133
  • Williams K A, Coster D J. Penetrating corneal transplantation in the inbred rat: A new model. Invest Ophthalmol Vis Sci. 1985; 26: 23–30
  • She S C, Steahly L P, Moticka E J. A method for performing full-thickness, orthotopic, penetrating keratoplasty in the mouse. Ophthalmic Surg. 1990; 21: 781–785
  • Ayliffe W, Alam Y, Bell E B, McLeod D, Hutchinson I V. Prolongation of rat corneal graft survival by treatment with anti-CD4 monoclonal antibody. Br J Ophthalmol. 1992; 76: 602–606
  • He Y G, Ross J, Niederkorn J Y. Promotion of murine orthotopic corneal allograft survival by systemic administration of anti-CD4 monoclonal antibody. Invest Ophthalmol Vis Sci. 1991; 32: 2723–2728
  • Niederkorn J Y, Stevens C, Mellon J, Mayhew E. CD4+ T-cell-independent rejection of corneal allografts. Transplantation 2006; 81: 1171–1178
  • Yamada J, Kurimoto I, Streilein J W. Role of CD4+ T cells in immunobiology of orthotopic corneal transplants in mice. Invest Ophthalmol Vis Sci. 1999; 40: 2614–2621
  • Niederkorn J Y, Mellon J. Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci. 1996; 37: 2700–2707
  • She S C, Moticka E J. Ability of intracamerally inoculated B- and T-cell enriched allogeneic lymphocytes to enhance corneal allograft survival. Int Ophthalmol. 1993; 17: 1–7
  • She S C, Steahly L P, Moticka E J. Intracameral injection of allogeneic lymphocytes enhances corneal graft survival. Invest Ophthalmol Vis Sci. 1990; 31: 1950–1956
  • Sonoda Y, Streilein J W. Orthotopic corneal transplantation in mice—Evidence that the immunogenetic rules of rejection do not apply. Transplantation 1992; 54: 694–704
  • Lowin B, Hahne M, Mattmann C, Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370: 650–652
  • Williams N S, Engelhard V H. Perforin-dependent cytotoxic activity and lymphokine secretion by CD4+ T cells are regulated by CD8+ T cells. J Immunol. 1997; 159: 2091–2099
  • Hegde S, Niederkorn J Y. The role of cytotoxic T lymphocytes in corneal allograft rejection. Invest Ophthalmol Vis Sci. 2000; 41: 3341–3347
  • Hegde S, Beauregard C, Mayhew E, Niederkorn J Y. CD4(+) T-cell-mediated mechanisms of corneal allograft rejection: Role of Fas-induced apoptosis. Transplantation 2005; 79: 23–31
  • Stuart P M, Yin X, Plambeck S, Pan F, Ferguson T A. The role of Fas ligand as an effector molecule in corneal graft rejection. Eur J Immunol. 2005; 35: 2591–2597
  • Torres P F, De Vos A F, van der Gaag R, Martins B, Kijlstra A. Cytokine mRNA expression during experimental corneal allograft rejection. Exp Eye Res. 1996; 63: 453–461
  • Zhu S, Dekaris I, Duncker G, Dana M R. Early expression of proinflammatory cytokines interleukin-1 and tumor necrosis factor-alpha after corneal transplantation. J Interferon Cytokine Res. 1999; 19: 661–669
  • Pleyer U, Milani J K, Ruckert D, Rieck P, Mondino B J. Determinations of serum tumor necrosis factor alpha in corneal allografts. Ocul Immunol Inflamm. 1997; 5: 149–155
  • Rayner S A, King W J, Comer R M, et al. Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation. Clin Exp Immunol 2000; 122: 109–116
  • Yamada J, Streilein J W, Dana M R. Role of tumor necrosis factor receptors TNFR-I (P55) and TNFR-II (P75) in corneal transplantation. Transplantation 1999; 68: 944–949
  • Niederkorn J Y, Mayhew E, Mellon J, Hegde S. Role of tumor necrosis factor receptor expression in anterior chamber-associated immune deviation (ACAID) and corneal allograft survival. Invest Ophthalmol Vis Sci. 2004; 45: 2674–2681
  • Callanan D, Peeler J, Niederkorn J Y. Characteristics of rejection of orthotopic corneal allografts in the rat. Transplantation 1988; 45: 437–443
  • Callanan D G, Luckenbach M W, Fischer B J, Peeler J S, Niederkorn J Y. Histopathology of rejected orthotopic corneal grafts in the rat. Invest Ophthalmol Vis Sci. 1989; 30: 413–424
  • Roelen D L, van Beelen E, van Bree S P, van Rood J J, Volker-Dieben H J, Claas F H. The presence of activated donor HLA class I-reactive T lymphocytes is associated with rejection of corneal grafts. Transplantation 1995; 59: 1039–1042
  • Yamada J, Ksander B R, Streilein J W. Cytotoxic T cells play no essential role in acute rejection of orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci. 2001; 42: 386–392
  • Ksander B R, Sano Y, Streilein J W. Role of donor-specific cytotoxic T cells in rejection of corneal allografts in normal and high-risk eyes. Transpl Immunol. 1996; 4: 49–52
  • Niederkorn J Y, Stevens C, Mellon J, Mayhew E. Differential roles of CD8+ and CD8– T lymphocytes in corneal allograft rejection in ‘high-risk’ hosts. Am J Transplant. 2006; 6: 705–713
  • Bishop D K, Chan Wood S, Eichwald E J, Orosz C G. Immunobiology of allograft rejection in the absence of IFN-gamma: CD8+ effector cells develop independently of CD4+ cells and CD40-CD40 ligand interactions. J Immunol. 2001; 166: 3248–3255
  • Jones N D, Carvalho-Gaspar M, Luo S, Brook M O, Martin L, Wood K J. Effector and memory CD8+ T cells can be generated in response to alloantigen independently of CD4+ T cell help. J Immunol. 2006; 176: 2316–2323
  • Trambley J, Bingaman A W, Lin A, et al. Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 1999; 104: 1715–1722
  • Zhai Y, Meng L, Busuttil R W, Sayegh M H, Kupiec-Weglinski J W. Activation of alloreactive CD8+ T cells operates via CD4-dependent and CD4-independent mechanisms and is CD154 blockade sensitive. J Immunol. 2003; 170: 3024–3028
  • Ehlers N, Olsen T, Johnsen H E. Corneal graft rejection probably mediated by antibodies. Acta Ophthalmol (Copenh). 1981; 59: 119–125
  • Hahn A B, Foulks G N, Enger C, et al. The association of lymphocytotoxic antibodies with corneal allograft rejection in high risk patients. The Collaborative Corneal Transplantation Studies Research Group. Transplantation 1995; 59: 21–27
  • Jager M J, Vos A, Pasmans S, Hoekzema R, Broersma L, van der Gaag R. Circulating cornea-specific antibodies in corneal disease and cornea transplantation. Graefes Arch Clin Exp Ophthalmol. 1994; 232: 82–86
  • Roy R, Boisjoly H M, Wagner E, et al. Pretransplant and posttransplant antibodies in human corneal transplantation. Transplantation 1992; 54: 463–467
  • van Dorp G, Volker-Dieben H J, van Leeuwen A, Kok-Van Alphen C C, van Rood J J. Major histocompatibility complex or HL-A antibodies in patients with a rejection reaction [proceedings]. Ophthalmologica 1977; 175: 42
  • Group TCCTSR. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol 1992; 110: 1392–1403
  • Salisbury J D, Gebhardt B M. Blood group antigens on human corneal cells demonstrated by immunoperoxidase staining. Am J Ophthalmol. 1981; 91: 46–50
  • Grunnet N, Kristensen T, Kissmeyer-Nielsen F, Ehlers N. Occurrence of lymphocytotoxic lymphocytes and antibodies after corneal transplantation. Acta Ophthalmol (Copenh). 1976; 54: 167–173
  • Goslings W R, Yamada J, Dana M R, et al. Corneal transplantation in antibody-deficient hosts. Invest Ophthalmol Vis Sci 1999; 40: 250–253
  • Hegde S, Mellon J K, Hargrave S L, Niederkorn J Y. Effect of alloantibodies on corneal allograft survival. Invest Ophthalmol Vis Sci. 2002; 43: 1012–1018
  • Holan V, Vitova A, Krulova M, et al. Susceptibility of corneal allografts and xenografts to antibody-mediated rejection. Immunol Lett 2005; 100: 211–213
  • Bora N S, Gobleman C L, Atkinson J P, Pepose J S, Kaplan H J. Differential expression of the complement regulatory proteins in the human eye. Invest Ophthalmol Vis Sci. 1993; 34: 3579–3584
  • Lass J H, Walter E I, Burris T E, et al. Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest Ophthalmol Vis Sci 1990; 31: 1136–1148
  • Goslings W R, Prodeus A P, Streilein J W, Carroll M C, Jager M J, Taylor A W. A small molecular weight factor in aqueous humor acts on C1q to prevent antibody-dependent complement activation. Invest Ophthalmol Vis Sci. 1998; 39: 989–995
  • Hargrave S L, Mayhew E, Hegde S, Niederkorn J. Are corneal cells susceptible to antibody-mediated killing in corneal allograft rejection?. Transpl Immunol. 2003; 11: 79–89
  • Nickerson P, Steurer W, Steiger J, Zheng X, Steele A W, Strom T B. Cytokines and the Th1/Th2 paradigm in transplantation. Curr Opin Immunol. 1994; 6: 757–764
  • Mosmann T R, Cherwinski H, Bond M W, Giedlin M A, Coffman R L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986; 136: 2348–2357
  • Yamada J, Yoshida M, Taylor A W, Streilein J W. Mice with Th2-biased immune systems accept orthotopic corneal allografts placed in “high risk” eyes. J Immunol. 1999; 162: 5247–5255
  • Le Moine A, Flamand V, Demoor F X, et al. Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 1999; 103: 1659–1667
  • Piccotti J R, Chan S Y, Goodman R E, Magram J, Eichwald E J, Bishop D K. IL-12 antagonism induces T helper 2 responses, yet exacerbates cardiac allograft rejection. Evidence against a dominant protective role for T helper 2 cytokines in alloimmunity. J Immunol. 1996; 157: 1951–1957
  • VanBuskirk A M, Wakely M E, Orosz C G. Transfusion of polarized TH2-like cell populations into SCID mouse cardiac allograft recipients results in acute allograft rejection. Transplantation. 1996; 62: 229–238
  • Hargrave S L, Hay C, Mellon J, Mayhew E, Niederkorn J Y. Fate of MHC-matched corneal allografts in Th1-deficient hosts. Invest Ophthalmol Vis Sci 2004; 45: 1188–1193
  • Easty D, Entwistle C, Funk A, Witcher J. Herpes simplex keratitis and keratoconus in the atopic patient. A clinical and immunological study. Trans Ophthalmol Soc UK 1975; 95: 267–276
  • Ghoraishi M, Akova Y A, Tugal-Tutkun I, Foster C S. Penetrating keratoplasty in atopic keratoconjunctivitis. Cornea. 1995; 14: 610–613
  • Hargrave S, Chu Y, Mendelblatt D, Mayhew E, Niederkorn J. Preliminary findings in corneal allograft rejection in patients with keratoconus. Am J Ophthalmol. 2003; 135: 452–460
  • Lyons C J, Dart J K, Aclimandos W A, Lightman S, Buckley R J. Sclerokeratitis after keratoplasty in atopy. Ophthalmology. 1990; 97: 729–733
  • Harrison R J, Klouda P T, Easty D L, Manku M, Charles J, Stewart C M. Association between keratoconus and atopy. Br J Ophthalmol. 1989; 73: 816–822
  • Beauregard C, Stevens C, Mayhew E, Niederkorn J Y. Cutting edge: Atopy promotes Th2 responses to alloantigens and increases the incidence and tempo of corneal allograft rejection. J Immunol. 2005; 174: 6577–6581
  • Flynn T H, Ohbayashi M, Ikeda Y, Ono S J, Larkin D F. Effect of allergic conjunctival inflammation on the allogeneic response to donor cornea. Invest Ophthalmol Vis Sci. 2007; 48: 4044–4049
  • Hargrave S L, Mellon J, Niederkorn J. MHC matching improves corneal allograft survival in mice with Th2-immune bias. Transplant Proc. 2002; 34: 3413–3415
  • Matesic D, Valujskikh A, Pearlman E, Higgins A W, Gilliam A C, Heeger P S. Type 2 immune deviation has differential effects on alloreactive CD4+ and CD8+ T cells. J Immunol. 1998; 161: 5236–5244
  • Abbas A K, Murphy K M, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996; 383: 787–793
  • Dvorak H F, Galli S J, Dvorak A M. Cellular and vascular manifestations of cell-mediated immunity. Hum Pathol. 1986; 17: 122–137
  • Larkin D F, Alexander R A, Cree I A. Infiltrating inflammatory cell phenotypes and apoptosis in rejected human corneal allografts. Eye. 1997; 11: 68–74
  • Larkin D F, Calder V L, Lightman S L. Identification and characterization of cells infiltrating the graft and aqueous humor in rat corneal allograft rejection. Clin Exp Immunol. 1997; 107: 381–391
  • Williams K A, White M A, Ash J K, Coster D J. Leukocytes in the graft bed associated with corneal graft failure. Analysis by immunohistology and actuarial graft survival. Ophthalmology 1989; 96: 38–44
  • Brissette-Storkus C S, Reynolds S M, Lepisto A J, Hendricks R L. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci. 2002; 43: 2264–2271
  • Yamagami S, Ebihara N, Usui T, Yokoo S, Amano S. Bone marrow-derived cells in normal human corneal stroma. Arch Ophthalmol. 2006; 124: 62–69
  • Yamamoto N, Einaga-Naito K, Kuriyama M, Kawada Y, Yoshida R. Cellular basis of skin allograft rejection in mice: Specific lysis of allogeneic skin components by non-T cells. Transplantation. 1998; 65: 818–825
  • Slegers T P, Torres P F, Broersma L, van Rooijen N, van Rij G, van der Gaag R. Effect of macrophage depletion on immune effector mechanisms during corneal allograft rejection in rats. Invest Ophthalmol Vis Sci. 2000; 41: 2239–2247
  • Nair S, Buiting A M, Rouse R J, Van Rooijen N, Huang L, Rouse B T. Role of macrophages and dendritic cells in primary cytotoxic T lymphocyte responses. Int Immunol. 1995; 7: 679–688
  • Niederkorn J Y. The immunology of corneal transplantation. Dev Ophthalmol. 1999; 30: 129–140
  • Niederkorn J Y. Immunology and immunomodulation of corneal transplantation. Intern Rev Immunol. 2002; 21: 173–196
  • Niederkorn J Y. The immune privilege of corneal grafts. J Leukoc Biol. 2003; 74: 167–171
  • Claerhout I, Kestelyn P, Debacker V, Beele H, Leclercq G. Role of natural killer cells in the rejection process of corneal allografts in rats. Transplantation. 2004; 77: 676–682
  • Mayer K, Reinhard T, Reis A, Niehues T, Claas F H, Sundmacher R. Differential contribution of natural killer cells to corneal graft rejection in 3-week-old versus mature rats. Transplantation. 2003; 76: 578–582
  • Ljunggren H G, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 1990; 11: 237–244
  • Kitchens W H, Uehara S, Chase C M, Colvin R B, Russell P S, Madsen J C. The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation. 2006; 81: 811–817
  • LaRosa D F, Rahman A H, Turka L A. The innate immune system in allograft rejection and tolerance. J Immunol 2007; 178: 7503–7509
  • Maier S, Tertilt C, Chambron N, et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28–/– mice. Nat Med. 2001; 7: 557–562
  • McNerney M E, Lee K M, Zhou P, et al. Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant 2006; 6: 505–513
  • Brierly S C, Izquierdo L, Jr, Mannis M J. Penetrating keratoplasty for keratoconus. Cornea. 2000; 19: 329–332
  • Kirkness C M, Ezra E, Rice N S, Steele A D. The success and survival of repeat corneal grafts. Eye 1990; 4: 58–64, (Pt. 1)
  • Shimmura S, Tsubota K. Deep anterior lamellar keratoplasty. Curr Opin Ophthalmol. 2006; 17: 349–355
  • Sugita J, Kondo J. Deep lamellar keratoplasty with complete removal of pathological stroma for vision improvement. Br J Ophthalmol. 1997; 81: 184–188
  • Watson S L, Tuft S J, Dart J K. Patterns of rejection after deep lamellar keratoplasty. Ophthalmology. 2006; 113: 556–560
  • Panda A, Vanathi M, Kumar A, Dash Y, Priya S. Corneal graft rejection. Surv Ophthalmol. 2007; 52: 375–396
  • Tuft S J, Coster D J. The corneal endothelium. Eye 1990; 4: 389–424, (Pt. 3)
  • Boisgerault F, Liu Y, Anosova N, Ehrlich E, Dana M R, Benichou G. Role of CD4+ and CD8+ T cells in allorecognition: Lessons from corneal transplantation. J Immunol. 2001; 167: 1891–1899
  • Sano Y, Ksander B R, Streilein J W. Minor H, rather than MHC, alloantigens offer the greater barrier to successful orthotopic corneal transplantation in mice. Transpl Immunol. 1996; 4: 53–56
  • Sano Y, Ksander B R, Streilein J W. Langerhans cells, orthotopic corneal allografts, and direct and indirect pathways of T-cell allorecognition. Invest Ophthalmol Vis Sci. 2000; 41: 1422–1431
  • Sano Y, Streilein J W, Ksander B R. Detection of minor alloantigen-specific cytotoxic T cells after rejection of murine orthotopic corneal allografts: Evidence that graft antigens are recognized exclusively via the “indirect pathway.”. Transplantation 1999; 68: 963–970

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.