454
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Morphological Differences between the Trabecular Meshworks of Zebrafish and Mammals

, , , , , , & show all
Pages 59-72 | Received 07 Dec 2006, Accepted 30 Oct 2007, Published online: 02 Jul 2009

REFERENCES

  • Smith R S, Zabaleta A, Savinova O V, John S W. The mouse anterior chamber angle and trabecular meshwork develop without cell death. BMC Dev Biol 2001; 1: 3
  • Soules K A, Link B A. Morphogenesis of the anterior segment in the zebrafish eye. BMC Dev Biol 2005; 5: 12
  • Gabelt B T, Wiederholt M, Clark A F, Kaufman P L. Anterior segment physiology after bumetanide inhibition of Na-K-Cl cotransport. Invest Ophthalmol Vis Sci 1997; 38: 1700–1707
  • Tian B, Geiger B, Epstein D L, Kaufman P L. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci 2000; 41: 619–623
  • Ryland T R, Lewis P A, Chisholm M, et al. Localization of smooth muscle actin in the iridocorneal angle of normal and spontaneous glaucomatous beagle dogs. Vet Ophthalmol 2003; 6: 205–209
  • de Kater A W, Spurr-Michaud S J, Gipson I K. Localization of smooth muscle myosin-containing cells in the aqueous outflow pathway. Invest Ophthalmol Vis Sci 1990; 31: 347–353
  • Flugel C, Tamm E, Lutjen-Drecoll E. Different cell populations in bovine trabecular meshwork: An ultrastructural and immunocytochemical study. Exp Eye Res 1991; 52: 681–690
  • Weinreb R N, Ryder M I. In situ localization of cytoskeletal elements in the human trabecular meshwork and cornea. Invest Ophthalmol Vis Sci 1990; 31: 1839–1847
  • Lutjen-Drecoll E. Functional morphology of the trabecular meshwork in primate eyes. Prog Retin Eye Res 1999; 18: 91–119
  • Corpuz L M, Funderburgh J L, Funderburgh M L, et al. Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A. J Biol Chem 1996; 271: 9759–9763
  • Acott T S, Kingsley P D, Samples J R, Van Buskirk E M. Human trabecular meshwork organ culture: Morphology and glycosaminoglycan synthesis. Invest Ophthalmol Vis Sci 1988; 29: 90–100
  • Alvarado J A, Murphy C G. Outflow obstruction in pigmentary and primary open angle glaucoma. Arch Ophthalmol 1992; 110: 1769–1778
  • Eriksson A, Svedbergh B. Transcellular aqueous humor outflow: A theoretical and experimental study. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1980; 212: 187–197
  • Ethier C R, Kamm R D, Palaszewski B A, et al. Calculations of flow resistance in the juxtacanalicular meshwork. Invest Ophthalmol Vis Sci 1986; 27: 1741–1750
  • Lutjen-Drecoll E, Futa R, Rohen J W. Ultrahistochemical studies on tangential sections of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 1981; 21: 563–573
  • McEwen W K. Application of Poiseuille's law to aqueous outflow. AMA Arch Ophthalmol 1958; 60: 290–294
  • Murphy C G, Johnson M, Alvarado J A. Juxtacanalicular tissue in pigmentary and primary open angle glaucoma. The hydrodynamic role of pigment and other constituents. Arch Ophthalmol 1992; 110: 1779–1785
  • Richardson T M. Distribution of glycosaminoglycans in the aqueous outflow system of the cat. Invest Ophthalmol Vis Sci 1982; 22: 319–329
  • Seiler T, Wollensak J. The resistance of the trabecular meshwork to aqueous humor outflow. Graefes Arch Clin Exp Ophthalmol 1985; 223: 88–91
  • Tan J C, Peters D M, Kaufman P L. Recent developments in understanding the pathophysiology of elevated intraocular pressure. Curr Opin Ophthalmol 2006; 17: 168–174
  • Tanihara H, Inatani M, Koga T, et al. Proteoglycans in the eye. Cornea 2002; 21: S62–S69
  • Tanihara H, Ohira A, Takahashi M, et al. Localization and possible gene expression of proteoglycan decorin in the trabecular meshwork. Curr Eye Res 1995; 14: 727–730
  • Wirtz M K, Bradley J M, Xu H, et al. Proteoglycan expression by human trabecular meshworks. Curr Eye Res 1997; 16: 412–421
  • Brown D L, Kao W W, Greenhalgh D G. Apoptosis down-regulates inflammation under the advancing epithelial wound edge: Delayed patterns in diabetes and improvement with topical growth factors. Surgery 1997; 121: 372–380
  • Funderburgh J L, Funderburgh M L, Brown S J, et al. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique. J Biol Chem 1993; 268: 11874–11880
  • Funderburgh J L, Mitschler R R, Funderburgh M L, et al. Macrophage receptors for lumican. A corneal keratan sulfate proteoglycan. Invest Ophthalmol Vis Sci 1997; 38: 1159–1167
  • Liu C Y, Shiraishi A, Kao C W, et al. The cloning of mouse keratocan cDNA and genomic DNA and the characterization of its expression during eye development. J Biol Chem 1998; 273: 22584–22588
  • Scott J E. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry 1996; 35: 8795–8799
  • Davies Y, Fullwood N J, Marcyniuk B, et al. Keratan sulphate in the trabecular meshwork and cornea. Curr Eye Res 1997; 16: 677–686
  • Pellegata N S, Eguez-Lucena J L, Joensuu T, et al. Mutations in KERA, encoding keratocan, cause cornea plana. Nat Genet 2000; 25: 91–95
  • Chakravarti S, Magnuson T, Lass J H, et al. Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J Cell Biol 1998; 141: 1277–1286
  • Chakravarti S, Petroll W M, Hassell J R, et al. Corneal opacity in lumican-null mice: Defects in collagen fibril structure and packing in the posterior stroma. Invest Ophthalmol Vis Sci 2000; 41: 3365–3373
  • Saika S, Shiraishi A, Liu C Y, et al. Role of lumican in the corneal epithelium during wound healing. J Biol Chem 2000; 275: 2607–2612
  • Glass A S, Dahm R. The zebrafish as a model organism for eye development. Ophthal Res 2004; 36: 4–24
  • McMahon C, Semina E V, Link B A. Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138: 343–350
  • Groff J M, Naydan D K, Higgins R J, Zinkl J G. Cytokeratin-filament expression in epithelial and non-epithelial tissues of the common carp (Cyprinus carpio). Cell Tissue Res 1997; 287: 375–384
  • Liu C Y, Birk D E, Hassell J R, et al. Keratocan-deficient mice display alterations in corneal structure. J Biol Chem 2003; 278: 21672–21677
  • Diskin S, Kumar J, Cao Z, et al. Detection of differentially expressed glycogenes in trabecular meshwork of eyes with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 1491–1499
  • Klymkowsky M W. Intermediate filaments: New proteins, some answers, more questions. Curr Opin Cell Biol 1995; 7: 46–54
  • Cockerham G C, Laver N V, Hidayat A A, McCoy D L. An immunohistochemical analysis and comparison of posterior polymorphous dystrophy with congenital hereditary endothelial dystrophy. Cornea 2002; 21: 787–791
  • Conrad M, Lemb K, Schubert T, Markl J. Biochemical identification and tissue-specific expression patterns of keratins in the zebrafish Danio rerio. Cell Tissue Res 1998; 293: 195–205
  • Larson D M, Fujiwara K, Alexander R W, Gimbrone M A, Jr. Myosin in cultured vascular smooth muscle cells: Immunofluorescence and immunochemical studies of alterations in antigenic expression. J Cell Biol 1984; 99: 1582–1589
  • Tsukahara S. The existence of smooth muscle adjacent to the Schlemm's canal of the normal albino rat eye. Acta Ophthalmol (Copenh) 1978; 56: 735–741
  • McMenamin P G, Lee W R. The normal anatomy of the pig tailed macaque (Macaca nemestrina) outflow apparatus with particular reference to the presence of smooth muscle. Graefes Arch Clin Exp Ophthalmol 1982; 219: 225–232
  • Knepper P A, Farbman A I, Bondareff W. A smooth muscle plexus associated with the aqueous outflow pathway of the rabbit eye. Anat Rec 1975; 182: 41–51
  • Fullwood N J, Davies Y, Nieduszynski I A, et al. Cell surface-associated keratan sulfate on normal and migrating corneal endothelium. Invest Ophthalmol Vis Sci 1996; 37: 1256–1270
  • Iozzo R V, Pillarisetti J, Sharma B, et al. Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-beta via a nuclear factor 1-binding element. J Biol Chem 1997; 272: 5219–5228
  • Wight T N, Kinsella M G, Qwarnstrom E E. The role of proteoglycans in cell adhesion, migration, and proliferation. Curr Opin Cell Biol 1992; 4: 793–801
  • Kao W W, Liu C Y. Roles of lumican and keratocan on corneal transparency. Glycoconj J 2002; 19: 275–285
  • Kao W W, Funderburgh J L, Xia Y, et al. Focus on molecules: Lumican. Exp Eye Res 2006; 82: 3–4
  • Gong H, Tripathi R C, Tripathi B J. Morphology of the aqueous outflow pathway. Microsc Res Tech 1996; 33: 336–367
  • Gipson I K, Anderson R A. Actin filaments in cells of human trabecular meshwork and Schlemm's canal. Invest Ophthalmol Vis Sci 1979; 18: 547–561
  • Goldman R D, Schloss J A, Strarger J M. Organizational changes of actin microfilaments during animal cell movement. Cell Motility, Book A. Cold Spring Harbor Conference on Cell Proliferation, Cold Spring Harbor Laboratory, Washington, D.C. 1976; 217–246
  • Geiger B, Yehuda-Levenberg S, Bershadsky A D. Molecular interactions in the submembrane plaque of cell-cell and cell-matrix adhesions. Acta Anat (Basel). 1995; 154: 46–62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.